BEFORE THE POLLUTION CONTROL BOARD OF THE STATE OF ILLINOIS

SHREE KRUBER, INC., ,)	
Petitioner,)	
)	
v.)	PCB 2021-003
	j	(LUST Appeal)
ILLINOIS ENVIRONMENTAL	j	
PROTECTION AGENCY,	j	
Respondent.)	

NOTICE

Don Brown, Clerk Illinois Pollution Control Board James R. Thompson Center 100 West Randolph, Suite 11-500 Chicago, IL 60601 don.brown@illinois.gov

don.brown@illinois.gov

Jennifer M. Martin
Melissa S. Brown
HEPLERBROOM, LLC

4340 Acer Grove Drive
Springfield, IL 62711
Jennifer Martin@heplerbroom.com

Jennifer.Martin@heplerbroom.com Melissa.Brown@heplerbroom.com Carol Webb, Hearing Officer Illinois Pollution Control Board 1021 North Grand Avenue East P.O. Box 19274 Springfield, IL 62794-9274 carol.webb@illinois.gov

PLEASE TAKE NOTICE that I have today filed with the office of the Clerk of the Pollution Control Board an **APPEARANCE**, the **ADMINISTRATIVE RECORD** and a **CERTIFICATE OF RECORD ON APPEAL**, copies of which are herewith served upon you.

Respectfully submitted,

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY,

Respondent

Melanie A. Jarvis Assistant Counsel

Division of Legal Counsel

1021 North Grand Avenue, East

P.O. Box 19276

Springfield, Illinois 62794-9276

217/782-5544

866/273-5488 (TDD)

Dated: January 6, 2021

BEFORE THE POLLUTION CONTROL BOARD OF THE STATE OF ILLINOIS

SHREE KRUBER, INC., ,)	
Petitioner,)	
)	
v.)	PCB 2021-003
	j	(LUST Appeal)
ILLINOIS ENVIRONMENTAL	j	
PROTECTION AGENCY,	j	
Respondent.	í	

APPEARANCE

The undersigned, as one of its attorneys, hereby enters her Appearance on behalf of the Respondent, the Illinois Environmental Protection Agency.

Respectfully submitted,

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY, Respondent

Melanie A. Jarvis

Melanist

Assistant Counsel

Special Assistant Attorney General

Division of Legal Counsel

1021 North Grand Avenue, East

P.O. Box 19276

Springfield, Illinois 62794-9276

217/782-5544

866/273-5488 (TDD)

melanie.jarvis@illinois.gov

Dated: January 6 2021

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

SHREE KRUBER, INC.,	j)	
Pe	etitioner,)	
)	
v.)	PCB 2021-003
)	(LUST Appeal)
ILLINOIS ENVIRONMENTAI)	
PROTECTION AGENCY,		j	
Re	espondent.)	

CERTIFICATE OF RECORD ON APPEAL

Pursuant to 35 Ill. Adm. Code 105.116(b) and 105.410, the following constitutes an index of documents comprising the record:

PAGES	DOCUMENT(S)	DATE
R0001-R0064	2008 45-Day Report	June 3, 2008
R0065-R0180	Corrective Action Plan and Budget	July 1, 2013
R0181-R0278	2020 45-Day Report	March 16, 2020
R0279-R0294	Technical Review Notes	April 7, 2020
R0295-R0311	Management Group Email	June 16, 2020
R0312	Management Decision	June 16, 2020
R0313-R0314	IEPA Determination Letter	June 30, 2020

I, Nicole Cosenza, certify on information and belief that the entire record of the Respondent's decision, as defined in 35 Ill. Adm. Code 105.410(b), is hereby enclosed.

y: // luly

Nicole Cosenza, Project Manager Leaking Underground Storage Tank Section Illinois Environmental Protection Agency

Date: 1/6/21

This filing submitted on recycled paper.

CERTIFICATE OF SERVICE

I, the undersigned attorney at law, hereby certify that on **January 6, 2021**, I served true and correct copies of an **APPEARANCE**, the **ADMINISTRATIVE RECORD** and a **CERTIFICATE OF RECORD ON APPEAL**, via the Board's COOL system and email, upon the following named persons:

Don Brown, Clerk Illinois Pollution Control Board James R. Thompson Center 100 West Randolph, Suite 11-500 Chicago, IL 60601 don.brown@illinois.gov

Jennifer M. Martin Melissa S. Brown HEPLERBROOM, LLC 4340 Acer Grove Drive Springfield, IL 62711 Jennifer.Martin@heplerbroom.com Melissa.Brown@heplerbroom.com Carol Webb, Hearing Officer Illinois Pollution Control Board 1021 North Grand Avenue East P.O. Box 19274 Springfield, IL 62794-9274 carol.webb@illinois.gov

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY, Respondent

Melanie A. Jarvis Assistant Counsel Division of Legal Counsel

Melanis

1021 North Grand Avenue, East

P.O. Box 19276

Springfield, Illinois 62794-9276

217/782-5544

866/273-5488 (TDD)

melanie.jarvis@illinois.gov

Electronic Filing: Received, Clerk's Office 1/6/2021 433-Changaign

MIDWEST ENVIRONMENTAL CONSULTING & REMEDIATION SERVICES, INC 22200 ILLINOIS ROUTE 9 POST OFFICE BOX 614

TREMONT, ILLINOIS 61568

PHONE NO. (309) 925-5551 FAX (309) 925-5606

LETTER OF TRANSMITTAL

TO: Illinois Environmental Protection Agency

Bureau of Land-#24/LUST Section 1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

DATE: June 3, 2008 JOB NO.: 08-24 RE: 45 Day Report

> Freedom Oil Company 1406 North Prospect Champaign, Illinois 61820

WFA	DF	SEND	\mathbf{N}	VOII

(X)	REPORT	() LETTER	() CONTRACT & RATE SHEET
------------	--------	------------	---------------------------

() MAP/DRAWINGS () DOCUMENTS REQUIRING SIGNATURES

() REIMBURSEMENT DOCUMENTATION () OTHER

COPIES	DESCRIPTION
2	45 Day Report for the above referenced site

THESE ARE TRANSMITTED AS CHECKED BELOW:

() REIMBURSEMENT SUBMITTAL (X) FOR APPROVAL () AS NEEDED FOR REPORT

() COPY FOR YOUR RECORDS () SIGNATURE REQUIRED () AS REQUESTED

REMARKS:

Dear IEPA Project Manager:

Please find enclosed the above referenced documentation for your review. As always, please feel free to contact our office with any questions or comments. Thank You.

RELEASABLE

FROM: Gave Lynn Green: Office Manager JUN 2 0 2008 RECEIVED

Midwest Environmental Consulting & Remediation Services, Inc.

REVIEWER MD JUN 1 1 2008

IEPA/BOL

Midwest Environmental Consulting & Remediation Services Inc.

22200 Illinois Route 9 • P.O. Box 614 Tremont, IL 61568-0614 Phone: (309) 925-5551 • Fax: (309) 925-5606

June 3, 2008

Illinois Environmental Protection Agency Bureau of Land - #24 LUST Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276

RE:

LPC# 0910105433 - Champaign County

Freedom Oil Company 1406 North Prospect Champaign, Illinois 61820 Incident # 20080255

LUST Technical File

Clar M Luce

Dear IEPA Project Manager:

Please find attached the 45-Day Report/Report of Early Action for the above referenced site.

Additional information will be gathered and analyzed as part of the site investigation.

If you have any questions or comments feel free to contact my office.

Sincerely,

Midwest Environmental Consulting & Remediation Services, Inc.

RELEASABLE

JUN 20 2008

REVIEWER MD

Allan Green President

AJF
Job No. 08-24
cc: Mr. Gene Adams

RECEIVED JUN 1 1 2008

IEPA/BOL

LEAKING UNDERGROUND STORAGE TANK PROGRAM

45 DAY REPORT/REPORT OF EARLY ACTION

SUBJECT SITE:

FREEDOM OIL COMPANY 1406 NORTH PROSPECT

CHAMPAIGN, ILLINOIS 61820

INCIDENT #20080255

PREPARED FOR:

FREEDOM OIL COMPANY

814 WEST CHESTNUT STREET

BLOOMINGTON, IL 61701 CONTACT: MR. GENE ADAMS

(309) 828-7750

PREPARED BY:

MIDWEST ENVIRONMENTAL CONSULTING

AND REMEDIATION SERVICES, INC.

22200 ILLINOIS ROUTE 9 POST OFFICE BOX 614

TREMONT, ILLINOIS 61568-0614

CONTACT: ALLAN GREEN, PRESIDENT

FOR REVIEW BY:

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

BUREAU OF LAND - #24

LEAKING UNDERGROUND STORAGE TANK SECTION

1021 NORTH GRAND AVENUE EAST

POST OFFICE BOX 19276

SPRINGFIELD, ILLINOIS 62794-9276

TABLE OF CONTENTS

45 DAY REPORT

- A. IEPA 45 DAY REPORT FORM
- B. IEPA 45 DAY REPORT
- C. REPORT OF EARLY ACTION

FIGURES

Figure	1	Site Map
Figure	2	Area Map
T)'	•	OC

Figure 3 Topographic Map

Figure 4 Early Action Sampling Locations

Figure 5 UST Cross Section

TABLES

Table 1	Underground Storage Tank Information
Table 2	Early Action Soil Sampling Results

APPENDICES

Appendix A Laboratory Data

Appendix B MECRS Soil Sampling Protocol

Appendix C OSFM Removal Notification and Removal Permit

Appendix D Early Action Photographs

JUN 1 1 2008
IEPA/BOL

IEPA 45 DAY REPORT FORM

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program 45-Day Report

A.	Site	Identification						
	IEMA	A Incident # (6- or 8-dig	it): 200802	55 IEPA LPC#	(10-digit): <u>0</u>	910105433		
	Site	Name: <u>Freedom Oil C</u>	ompany					- -
	Site	Address (Not a P.O. Bo	ox): <u>1406 N</u>	orth Prospect				
	City:	Champaign	Cou	inty: <u>Champaign</u>	ZIP (Code: 6182	20	_ _
	Leak	ing UST Technical File)					
В.	Rele	ease Information						_
Vol	ST ume lons)	Material Stored in UST	Release Yes / No	Type of Release Tank Leak / Overfill / Piping Leak	Product removed? Yes / No	Tank Repaired Abandon		
	0.00	Diesel Fuel	Yes	Overfill	Yes	Removed		
6,0	0.00	Gasoline	No		Yes	Abandone	ed in p	olace
6,0	0.00	Gasoline	No		Yes	Abandone	ed **	
10,0	0.00	Gasoline	No		Yes	Abandone	ed "	
2,0	0.00	Gasoline	No		Yes	Abandone	ed 🕶	
								RECEIVED
			 					
								JUN 1 1 200
C.	Ear	ly Action						IEPA/BOL
	1.	Does this report de remediation objecti		nat the most stringent Ti en met?	er 1	Yes □	No 🗹	
	2.	removal will be con	r operator ma Report (form Inducted for m Plan (and bud		ee	Yes 🗌	No ☑	
	3.			posed by vapors or fre er supply been identified		Yes □	No 🗹	

IL 532 2277 LPC 503 Rev. March 2006 45-Day Report 1 of 4

:40/Da	Jaco Information	
7.	Did the groundwater exhibit a sheen?	Yes ☑ No 🗌
6.	Was groundwater encountered at the site?	Yes 🗹 No 🗌
5.	What was the volume of native soil excavated?	160.0_ yds ³
4.	What was the volume of backfill material excavated?	500.0_ yds ³

D. Site/Release Information

Provide the following:

- 1. Data on the nature and estimated quantity of release;
- 2. Data from available sources or site investigations concerning the following factors:
 - a. Surrounding populations;
 - b. Water quality;
 - c. Use and approximate locations of wells potentially affected by the release;
 - d. Subsurface soil conditions;
 - e. Location of subsurface sewers;
 - f. Climatological conditions; and
 - g. Land use;
- A discussion of what was done to measure for the presence of a release where contamination was most likely to be present at the UST site;
- 4. The results of the free product investigations;
- 5. A discussion of the action taken to prevent further release of the regulated substance into the environment;
- A discussion of the action taken to monitor and mitigate fire and safety hazards posed by vapors or free product that has migrated from the UST excavation zone and entered subsurface structures; and
- 7. Any other information collected while performing initial abatement measures pursuant to 35 III. Adm. Code 731.162, 732.202(b), or 734.210(b).

E. Other Information

Provide the following:

- 1. An area map showing the site in relation to surrounding properties;
- 2. A cross section, to scale, showing the UST(s) and the excavation;
- 3. Analytical/screening results in tabular format including the results of soil samples required pursuant to 35 III. Adm. Code 732.202(h) or 734.210(h) and the most stringent Tier 1 remediation objectives;
- Site map meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440 and including sample locations;
- 5. Soil boring logs;

- Chain of custody forms;
- 7. Laboratory analytical reports;
- Laboratory certifications;
- A copy of the Office of the State Fire Marshal Permit for Removal, Abandonment-in-Place, or other OSFM permits or notifications;
- A narrative of tank removal and cleaning operations; describe how wastes generated during the tank removal were managed, treated, and disposed of;
- 11. Photographs of UST removal activities and the excavation; and
- 12. Copies of manifests for soil and groundwater transported off-site.

F. Early Action Tier 1 Remediation Objectives Compliance Report

If the most stringent Tier 1 remediation objectives of 35 III. Adm. Code 742 for the applicable indicator contaminants have been met and a groundwater investigation is not required, in addition to the information provided above, provide the following:

- 1. Site characterization;
- 2. If water was encountered in the excavation, provide a demonstration pursuant to 35 III. Adm. Code 732.202(h)(4)(C) or 734.210(h)(4)(C) that it is not representative of actual groundwater; and
- 3. Property Owner Summary (form LPC 568).

G. Signatures

UST Owner or Operator Signature:

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator and Licensed Professional Engineer or Licensed Professional Geologist Certification of Stage 1 Site Investigation Plan and Budget (applies to Part 734 sites continuing beyond early action):

Pursuant to 35 III. Adm. Code 734.315(b) and 734.310(b), I certify that the Stage 1 site investigation will be conducted in accordance with 35 III. Adm. Code 734.315 and that the costs of the Stage 1 site investigation will not exceed the amounts set forth in 35 III. Adm. Code 734.Subpart H, Appendix D, and Appendix E. This certification is intended to meet the requirements for a plan and budget for the Stage 1 site investigation required to be submitted pursuant to 35 III. Adm. Code 734.315 and 734.310.

A summary of the actual costs for conducting the Stage 1 site investigation will be submitted concurrently with the results of the Stage 1 site investigation and the Stage 2 site investigation plan and budget.

Continue onto next page.

Licensed Professional Engineer or Licensed Professional Geologist Certification:

I certify under penalty of law that all activities that are the subject of this plan, budget, or report were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan, budget, or report and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this plan, budget, or report has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 III. Adm. Code 731, 732, or 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].

UST Owner or Operator	Consulta	ant
Name: Freedom Oil Company	Company:	M.E.C.R.S., Inc.
Contact: Mr. Gene Adams	Contact:	Mr. Allan Green
Address: 814 West Chestnut Street	Address: _	22200 Illinois Route 9, P.O. Box 614
City: Bloomington	City:	Tremont
State: Illinois	State:	Illinois
ZIP Code: 61701	ZIP Code:	61568
Phone:(309) 828-7750	Phone:	(309) 925-5551
Signature:	Signature:	all- m Bree-
Date: 6-2-2008	Date:	6/3/08

Licensed Professional Engineer or Geologist

L.P.E. or L.P.G. Seal

Name: Penny Silzer
Company: M.E.C.R.S., Inc.
Address: 22200 Illinois Rt. 9, P.O. Box 614
City:Tremont
State: Illinois
ZIP Code: 61568
Phone: (309) 925-5551
III. Registration No.: 196-000256
License Expiration Date: 03/31/09
Signature: MWW X SU
Date: 0/3/08
į ()

JUN 1 1 2008
IEPA/BOL

IEPA 45 DAY REPORT

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

D. SITE INFORMATION

1. DATA ON THE NATURE AND ESTIMATED QUANTITY OF THE RELEASE;

A suspected release of diesel fuel was reported to the Illinois Emergency Management Agency on February 25, 2008 and assigned incident number 20080255. The release is the result of years of operation as a retail gasoline station and is attributed to line leaks and spills/overfills.

The source and quantity of the release are presently unknown. The extent of the release will be determined through site investigation activities as required.

2. DATA FROM AVAILABLE SOURCES OR SITE INVESTIGATIONS CONCERNING THE FOLLOWING FACTORS:

A.) SURROUNDING POPULATIONS;

The site of the release is located within a commercial area in Champaign, Illinois (approximate population: 76,000). Vicinity maps are attached.

B.) WATER QUALITY;

Water for the area is supplied by a municipal source. Water quality is reported as good. No reports of petroleum contamination of the local water supply have been identified.

C.) USE AND APPROXIMATE LOCATIONS OF WELLS POTENTIALLY AFFECTED BY THE RELEASE;

ISWS Well Data has been requested for the subject area and will be submitted in an addendum at a later date.

D.) SUBSURFACE SOIL CONDITIONS;

The site is underlain by Wisconsinan glacial stage deposits of the Wedron Formation tills. The location of the site, as mapped on "Quaternary Deposits of Illinois," ISGS, 1979, lies within Batestown Till Member mapping unit. This material consists of light olive brown to dark gray, calcareous, sandy to silty till that contains beds of sand and silt and one bed of boulders.

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

E.) LOCATION OF SUBSURFACE SEWERS;

Known utility locations are shown in Figure 1. Local utility owners have made no reports of vapors or free product in the vicinity of the release.

F.) CLIMATOLOGICAL CONDITIONS;

Climatological conditions at the site are typical of central Illinois. Temperatures are typically between the mid 90's and the low 60's in the spring and summer months and between the mid 50's and low teens for the autumn and winter months. Precipitation totals vary widely from year to year.

G.) LAND USE;

The subject site is a gasoline and diesel station located at 1406 North Prospect Avenue in Champaign, IL. Land use within 500 feet of the UST's is primarily commercial.

3. A DISCUSSION OF WHAT WAS DONE TO MEASURE FOR THE PRESENCE OF A RELEASE WHERE CONTAMINATION WAS MOST LIKELY TO BE PRESENT AT THE UST SITE;

A preliminary inspection of the site revealed the presence of contamination near the vicinity of the UST system. During UST removal activities, soil samples were collected from the UST excavation and sent to TMI Analytical Laboratory for analysis. Analytical results are presented in Table 1.

4. RESULTS OF THE FREE PRODUCT INVESTIGATIONS;

No free product was encountered during UST removal activities. A sheen was noted on the water in the UST excavation. Free product is not expected to be present in the native strata on the subject site.

5. A DISCUSSION OF THE ACTION TAKEN TO PREVENT FURTHER RELEASE OF THE REGULATED SUBSTANCE INTO THE ENVIRONMENT;

One diesel UST has been removed and four gasoline UST's have been emptied and abandoned in place. Following site investigation activities, corrective action activities will most likely include excavation activities to remediate the site property.

6. A DISCUSSION OF THE ACTION TAKEN TO MITIGATE FIRE AND SAFETY HAZARDS POSED BY VAPORS OR FREE PRODUCT THAT HAS MIGRATED FROM THE UST EXCAVATION ZONE AND ENTERED SUBSURFACE STRUCTURES;

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

There have been no reports of free product or vapors in inhabited subsurface structures in the area as a result of the release.

7. ANY OTHER INFORMATION COLLECTED WHILE PERFORMING INITIAL ABATEMENT MEASURES PURSUANT TO 35 ILL. ADM. CODE SECTION 732.162 OR 732.202 (B).

Additional information will be provided to IEPA upon completion of the site investigation.

E. SUPPORTING DOCUMENTATION PROVIDE THE FOLLOWING:

- 1. SITE MAP TO SCALE AND ORIENTED NORTH SHOWING:
 - A. UST(s) SYSTEM(S) AND EXCAVATION LIMITS;
 - B. PRODUCT AND DISPENSER LINES;
 - C. PUMPS AND ISLANDS;
 - D. UNDERGROUND UTILITIES (SEWER, GAS, WATER, ETC.);
 - E. NEARBY STRUCTURES (BUILDINGS, ROADS, ETC.);
 - F. SOIL BORING(S) (IF PRESENT);
 - G. MONITORING WELL(S) AND/OR SUMPS (IF PRESENT);
 - H. PROPERTY BOUNDARIES;
 - I. SAMPLE LOCATION POINTS;

A site map showing the current layout is provided. See Figure 1.

2. AN AREA MAP SHOWING THE SITE IN RELATION TO SURROUNDING PROPERTIES.
THIS MAP SHOULD IDENTIFY THE FACILITIES ON THE SURROUNDING PROPERTIES;

An area map and topographical map are attached to this report. See Figures 2 and 3.

3. A CROSS SECTION, TO SCALE, WITH DIMENSIONS SHOWING THE UST(S) AND THE EXCAVATION;

Provided as Figure 5.

4. ANALYTICAL/SCREENING RESULTS IN TABULAR FORMAT;

Soil analytical results are presented in Table 2 and Appendix A.

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

- 5. UST(s) INFORMATION IN A TABULAR FORMAT AND THAT AT A MINIMUM INCLUDES;
 - A. THE TOTAL NUMBER OF UST(S) ON SITE;
 - B. THE VOLUME OF THE UST(S) (IN GALLONS);
 - C. THE MATERIAL STORED IN THE UST(S);
 - D. IDENTIFICATION OF UST SYSTEM(S) THAT HAD A RELEASE;
 - E. IDENTIFICATION OF UST SYSTEM(S) THAT WERE REPAIRED, REMOVED, OR ABANDONED-IN-PLACE.

Underground storage tank information is attached to this report. See Table 1.

6. A COPY OF THE OFFICE OF THE STATE FIRE MARSHAL PERMIT FOR REMOVAL, ABANDONMENT-IN-PLACE OR OTHER OSFM PERMITS OR NOTIFICATIONS;

A copy of the Removal Permit and Notification are provided in Appendix C.

7. A NARRATIVE OF TANK REMOVAL AND CLEANING OPERATIONS; DESCRIBE HOW WASTES GENERATED DURING THE TANK REMOVAL WERE MANAGED, TREATED AND DISPOSED;

After remaining petroleum product was removed, all piping was disconnected from the tank. Piping runs were excavated and removed. The top of the UST was exposed with a backhoe. The tank was then vented of vapors so that less than 5% of the lower explosive limit was detected in it. It was removed from its respective excavation, cut open and cleaned. The decontaminated tank was then loaded onto a flatbed trailer for transport to be scrapped. The tank cleaning waste was drummed and stored on site for disposal permitting.

8. PHOTOGRAPHS OF UST REMOVAL ACTIVITIES AND THE EXCAVATION;

Photographs of Early Action activities are included in Appendix D.

9. COPIES OF MANIFESTS FOR SOIL AND GROUNDWATER TRANSPORTED OFF-SITE.

Soil was transported offsite and manifests will be included in an addendum at a later date.

REPORT OF EARLY ACTION

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

Report of Early Action Activities 45 Day Report

Freedom Oil Company 1406 North Prospect Champaign, Illinois IEMA Incident No. 20080255

There are a total of six (6) USTs located at the site (OSFM Facility ID# 4-016556). All of the USTs are registered with the OSFM. Incident number 20080255 was assigned to the subject site in response to identified near the UST system during UST removal activities.

On April 2, 2008, personnel and equipment were mobilized to the Freedom Oil Company station located at 1406 North Prospect Avenue in Champaign, Illinois (site) for underground storage tank (UST) removal activities. Illinois Oil Marketing Equipment (IOME) of Pekin, Illinois provided UST excavation, cleaning and disposal services; Midwest Environmental Consulting and Remediation Services, Inc. (MECRS) of Tremont, Illinois provided project oversight, documentation and consultation. The USTs were decommissioned under the supervision of Office of the Illinois State Fire Marshal (OSFM) representative Herman Taylor.

Upon removal of the tank, soil samples were collected from the excavation extents. The tank was in fair condition. Contamination in the UST pit was apparently due to UST and piping leaks as well as spills or overfills. The removal procedures were conducted according to standard safety protocols, under the supervision of OSFM representative Mr. Herman Taylor.

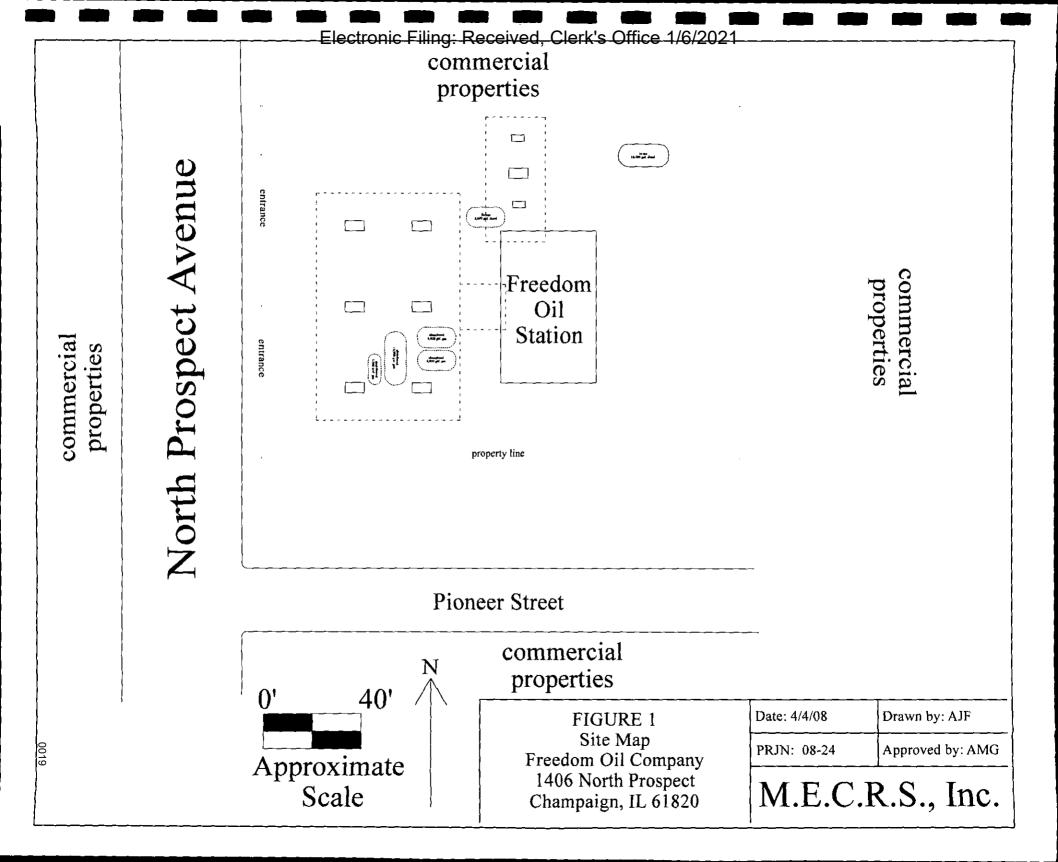
The UST was exposed the day of tank removal. After remaining petroleum product was removed, all piping was disconnected from the tanks. Piping runs were excavated and removed. The tops of the USTs were exposed with a backhoe. The tanks were then vented of vapors so that 5% of the lower explosive limit was detected in them. The tank was removed from its respective excavation, cut open and cleaned. The decontaminated tank was then loaded onto a flatbed trailer for transport to be scrapped. The waste from the UST was placed into IDOT approved 55 gallon drums and will be permitted for disposal.

The geologic strata encountered during removal consisted of silty, sandy, clays and till. Contaminated soils were encountered in the UST excavation.

The backfill in the UST excavation was contaminated, physically recognizable by soil discoloration and an odor. Field screening of the samples indicated volatile organics present in the soil. Soil samples were collected from native material at depths of about 3 feet below the invert elevation of the base of the tanks and from the UST excavation sidewalls. Sidewall samples were retrieved from the depths representative of two thirds the distance from the surface, in the lower one third of the excavation. UST excavation soil samples also exhibited petroleum impact, which was confirmed by screening samples using a portable photoionization detector (PID).

45 Day Report Freedom Oil Company - Champaign IEMA #20080255

Soil, split from field screened samples was containerized in glass jars and sealed under lids with Teflon septums and placed into a cooler on ice. The samples were transported to TMI Analytical Services of Springfield, Illinois for BTEX and PNAs under chain-of-custody, and accompanied by appropriate documentation. Soil analytical results in tabular format are provided in Table 2 and laboratory certified analytical results and completed chains-of-custody are provided in Appendix A.


Water in the UST excavation exhibited a petroleum sheen and an odor. Water levels did not appear to increase after a significant amount of time indicating that the water in the excavation appeared to be "trapped". No water bearing unit was identified in the depth of the UST excavation.

Prior to the excavation, three representative soil samples were taken from the excavation and sent for analysis of BTEX and PNAs. Two of the three soil samples showed contamination above the IEPA Tier 1 Cleanup Standards. Based on those soil samples and field screening of the soil as the excavation was performed, the soil was removed and disposed of at an approved landfill facility and replaced with clean backfill.

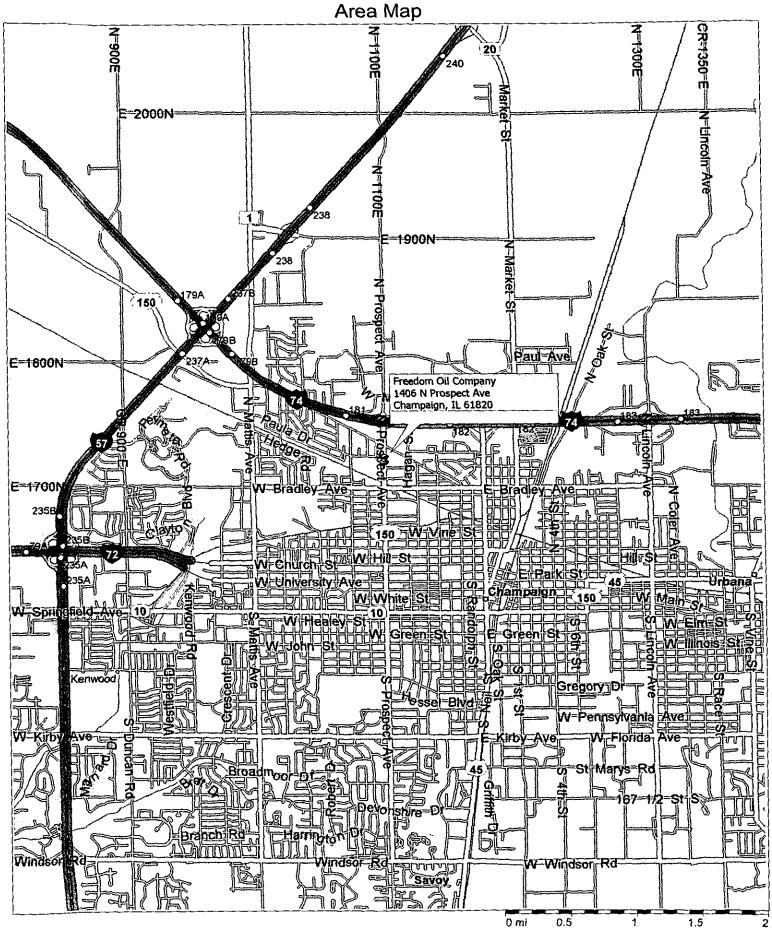
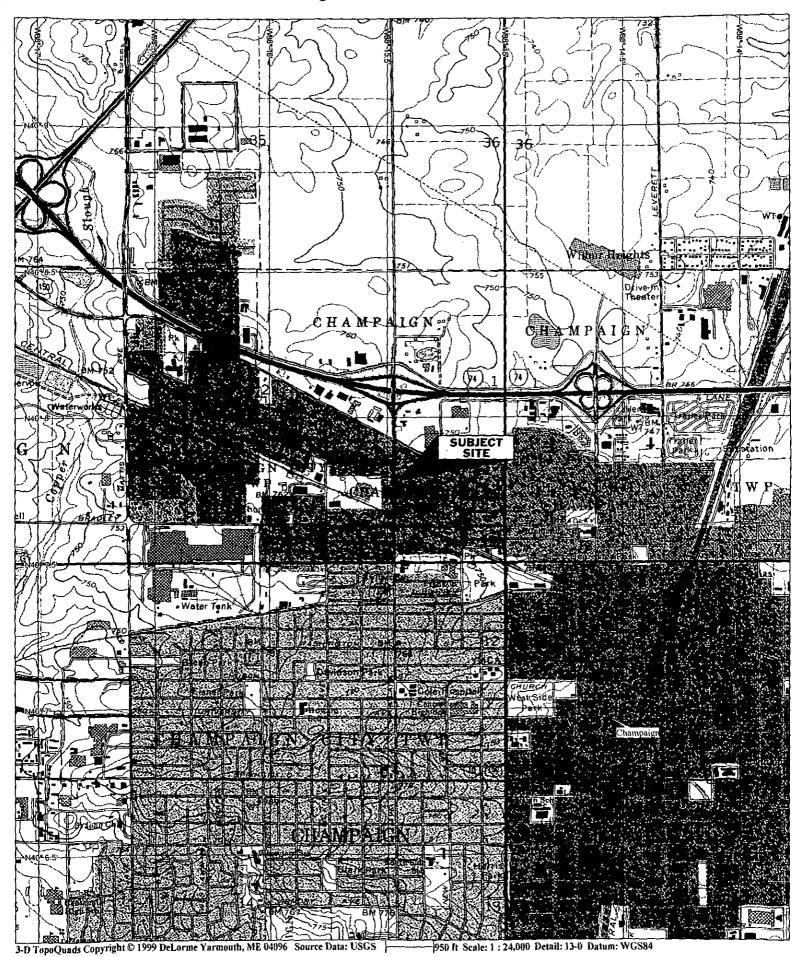
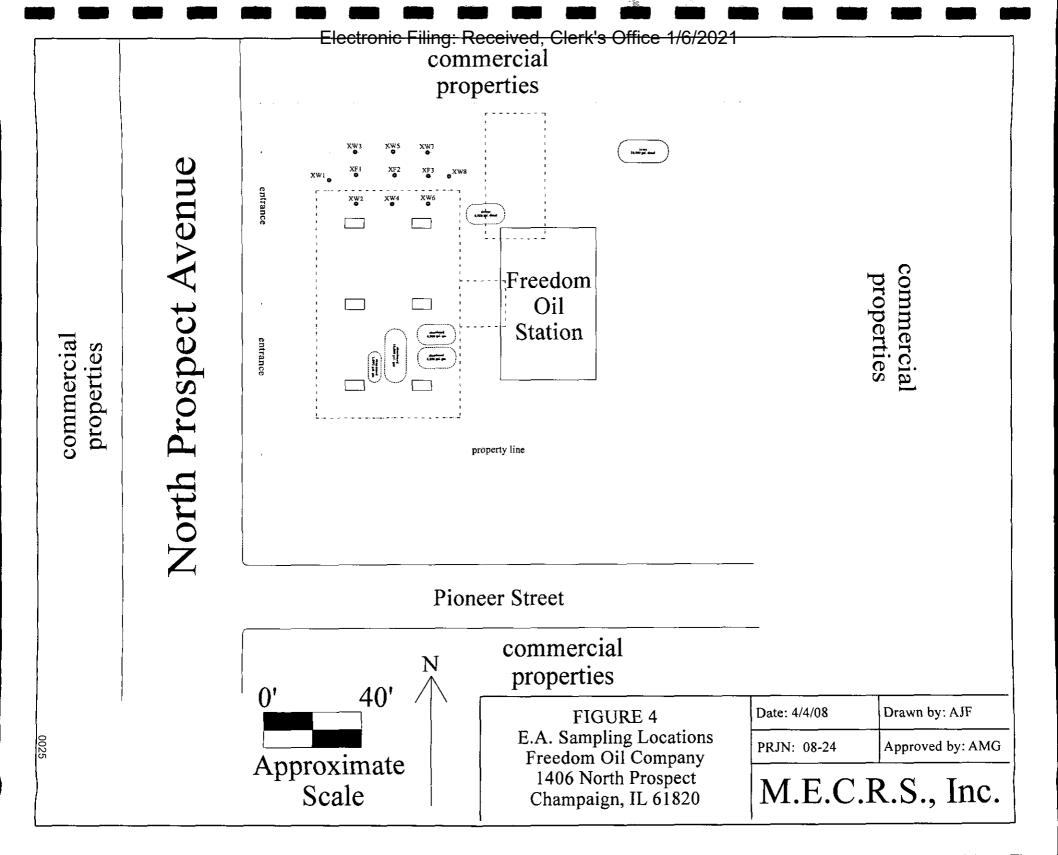

Confirmation of the presence of a release was indicated by the Early Action activities. The samples taken from the sidewalls of the UST excavation show that contamination above the IEPA Tier 1 Cleanup Standards remains on site.

FIGURE 1

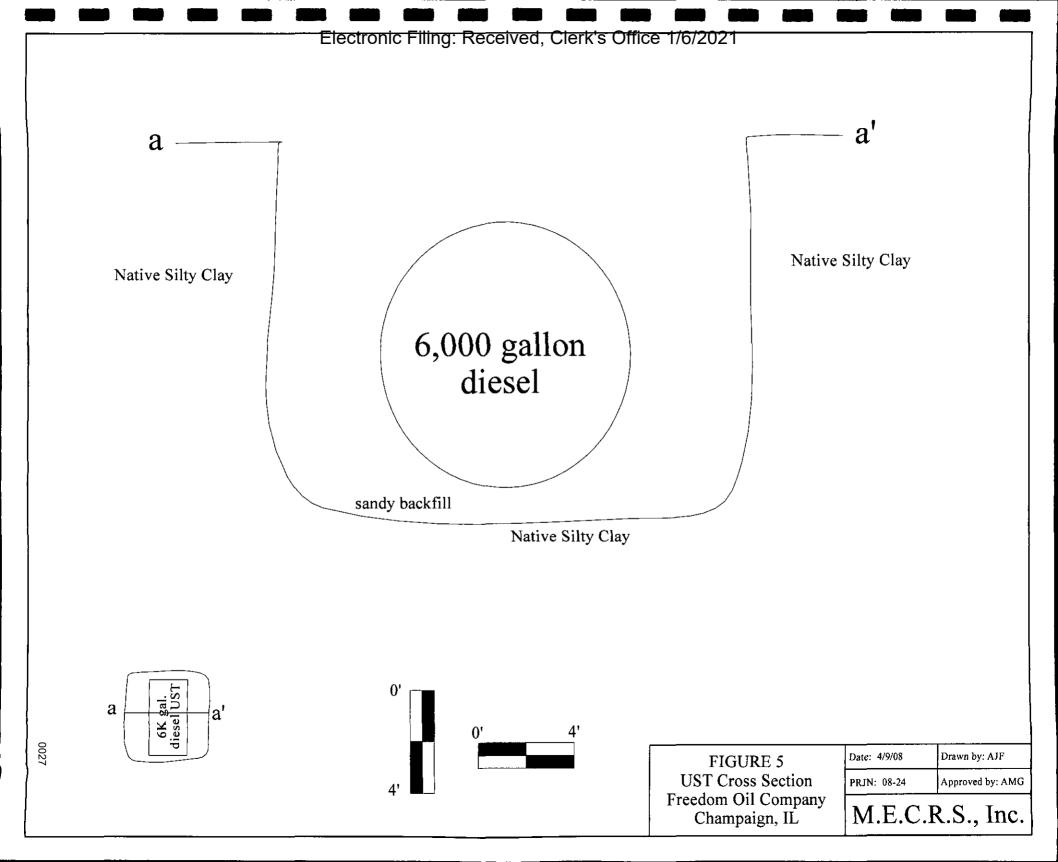
SITE MAP



AREA MAP



Copyright © 1988-2004 Microsoft Corp. and/or its suppliers. All rights reserved. http://www.microsoft.com/streets/
© Copyright 2003 by Geographic Data Technology, Inc. All rights reserved. © 2004 NAVTEQ. All rights reserved. This data includes information taken with permission from Canadian authorities © Her Majesty the Queen in Right of Canada.


TOPOGRAPHIC MAP

EARLY ACTION SAMPLING LOCATIONS

UST Cross Section

TABLE 1

UNDERGROUND STORAGE TANK INFORMATION

TABLE 1. UNDERGROUND STORAGE TANK INFORMATION FREEDOM OIL COMPANY – CHAMPAIGN, IL

Tank No.	Size (gal)	Contents	Release (Y or N)	Removed (Y or N)
1	6,000	Diesel Fuel	Yes	Yes
2	6,000	Gasoline	No	Abandoned In Place
3	6,000	Gasoline	No	Abandoned In Place
4	10,000	Gasoline	No	Abandoned In Place
5	2,000	Gasoline	No	Abandoned In Place
6	10,000	Diesel Fuel	No	No

TABLE 2

EARLY ACTION SOIL SAMPLING RESULTS

Page 1 of 3

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company

			_		_			
	\mathbf{C}	han	ıp	ai	gr	ı,	IL	

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	East Floor (EF) 04/02/08	West Floor (WF) 04/02/08	North Wall (NW) 04/02/08	South Wall (SW) 04/02/08	East Wall (EW) 04/02/08	West Wall (WW) 04/02/08
Benzene	30	4.4	<2.3	410	18.6	50.6	3.5 M
Toluene	12,000	4.1	3.0	<141	<2.4	<10.3	<2.3
Ethylbenzene	13,000	26.4	8.0	2,490	18.3	296	7.6 M
Total Xylenes	150,000	45.2	23.1	4,820	116	312	25.5 M
мтве	320	<2.3	<2.3	<141	<2.4	<10.3	<2.3
PNAs	\times	X	\times	X	\times	X	\times
Acenapthene	570,000	<81.3	<77.7	<77.6	<78.7	80.9	<79.4
Acenapthylene	XX	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Anthracene	12,000,000	<243	<232	<232	<235	<236	<237
Benzo (a) Anthracene	2,000	<243	<232	<232	<235	<236	<237
Benzo (a) Pyrene	8,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Benzo (b) Fluoranthene	5,000	<404	<386	<386	<391	<394	<395
Benzo (g,h,i) Perylene	XX	<243	<232	<232	<235	<236	<237
Benzo (k) Fluoranthene	49,000	<243	<232	<232	<235	<236	<237
Chrysene	160,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Dibenzo (a,h) Anthracene	2,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluoranthene	4,300,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluorene	560,000	<81.3	<77.7	<77.6	84.0	<79.2	<79.4
Ideno (1,2,3-cd) Pyrene	14,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Naphthalene	84,000	<81.3	<77.7	121	<78.7	147	<79.4
Phenanthrene	xx	<81.3	<77.7	106	79.1	164	<79.4
Pyrene	4,200,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

Page 2 of 3

TABLE 1. SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Landfill 1 (LF-1) 04/01/08	Landfill 2 (LF-2) 04/01/08	Landfill 3 (LF-3) 04/01/08	Exc Floor 1 (XF1) 4/3/008	Exc Floor 2 (XF2) 4/3/008	Exc Floor 3 (XF3) 4/3/008	Exc Wall 1 (XW1) 4/3/008
Benzene	30	<2.5	280	923	<2.5	<2.3	<2,4	24.7
Toluene	12,000	5.6	<164	<311	7.6	<2.3	<2.4	283
Ethylbenzene	13,000	<2.5	201	2,150	4.0	<2.3	<2.4	99,1
Total Xylenes	150,000	<6.2	1,140	2,960	15.2	<5.8	<6.0	652
мтве	320	NA	NA	NA	<2.5	<2.3	<2.4	<11.7
PNAs	$>\!\!<$	\times	\times	X	X	\times	$>\!\!\!<$	$\geq \!$
Acenapthene	570,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85,5
Acenapthylene	xx	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Anthracene	12,000,000	<251	<268	<250	<251	<236	<241 _	<255
Benzo (a) Anthracene	2,000	<251	<268	<250	<251	<236	<241_	<255
Benzo (a) Pyrene	8,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Benzo (b) Fluoranthene	5,000	<417	<447	<416	<418	<393	<401	<425
Benzo (g,h,i) Perylene	xx	<251	<268	<250	<251	<236	<241	<255_
Benzo (k) Fluoranthene	49,000	<251	<268	<250	<251	<236	<241	<255
Chrysene	160,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Dibenzo (a,h) Anthracene	2,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluoranthene	4,300,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluorene	560,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Ideno (1,2,3-cd) Pyrene	14,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Naphthalene	84,000	<84.0	<89.9	514	<84.2	<79.1	<80.6	<85.5
Phenanthrene	xx	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Pyrene	4,200,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

Page 3 of 3

TABLE 1. SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Exc Wall 2 (XW2) 04/03/08	Exc Wall 3 (XW3) 04/03/08	Exc Wall 4 (XW4) 04/03/08	Exc Wall 5 (XW5) 04/03/08	Exc Wall 6 (XW6) 04/03/08	Exc Wall 7 (XW7) 04/03/08	Exc Wall 8 (XW8) 04/03/08
Benzene	30	67.7	<2.3	<2.2	<2.3	<2.4	5.4	5.1
Toluene	12,000	285	23,1	<2.2	<2.3	<2.4	2.4	<2.3
Ethylbenzene	13,000	29.2	9.5	2,3	<2.3	3.0 M	9.1	229
Total Xylenes	150,000	139	48.7	<5.6	<5.8	6.2 M	10.6	85.2
мтве	320	<2.4	<2.3	<2.2	<2.3	<2.4	<2.3	<2.3
PNAs	\mathcal{N}	X	\times	\times	\times	\times	$>\!\!\!\!>$	$>\!\!\!<$
Acenapthene	570,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Aceлapthylene	XX	<80.0	<78.0	< 7 7.0	<78.6	<81.6	<78.5	<78.0
Anthracene	12,000,000	<239	<233	<230	<235	<244	<234	<233
Benzo (a) Anthracene	2,000	<239	<233_	<230	<235	<244	<234	<233
Benzo (a) Pyrene	8,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Benzo (b) Fluoranthene	5,000	<398	<388	<383	<391	<406	<390	<388
Benzo (g,h,i) Perylene	XX	<239	<233	<230	<235	<244	<234	<233
Benzo (k) Fluoranthene	49,000	<239	<233	<230	<235	<244	<234	<233
Chrysene	160,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Dibenzo (a,h) Anthracene	2,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluoranthene	4,300,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluorene	560,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78,0
Ideno (1,2,3-cd) Pyrene	14,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Naphthalene	84,000	<80.0	<78.0	<77.0	<78.6	6.18>	<78.5	626
Phenanthrene	ХХ	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	107
Pyrene	4,200,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

APPENDIX A

LABORATORY DATA

TMI Analytical Services, LLC

NELAC Accredited #100447

2110 N. Republic St. Springfield, IL 62702 217-698-0642 Fax:

217-698-0642 Fax: 217-698-0656

Order No.: 0804004

tmi@tmilab.com

02-Apr-08

T. Birky Midwest Environmental Services P.O. Box 614 Tremont, IL 61568-0614

TEL: (309) 925-5551 FAX (309) 925-5606

Dear T. Birky:

RE: Freedom Oil, Champaign

C. xivvavii on, ominpagi

TMI Analytical Services, LLC received 3 sample(s) on 4/1/2008 for the analyses presented in the following report.

There were no problems with the analyses unless noted on the case narrative or qualified on the analytical results. The final report includes this cover letter, analytical report and a copy of the chain of custody. It may also include but not be limited to letters of explanation or raw data.

E. Treadway

Erica Treadway

Assistant Laboratory Manager

TMI Analytical Services, LLC

CLIENT: Midwest Environmental Services

Project: Freedom Oil, Champaign

Lab Order: 0804004

CASE NARRATIVE

Date: 02-Apr-08

All samples were received and analyzed within method required holding times unless qualified in the report. Samples met specified acceptance criteria except where noted below or qualified on the report.

D=RL has been set at or above method detection limit and below limit of quantitation.

Report Qualifiers:

* Increased reporting firmit due to required dilution

B Analyte detected in the associated Method Blank

 F Analyte failed to meet the required acceptance criteria for duplicate analysis

M Matrix interference(s) identified

RL Reporting Limit

SUB Subcontracted

ŕ

Verification standard recovery failed to meet the required acceptance criteria.

The laboratory control sample failed to meet the required acceptance criteria

E Value above quantitation range

H Holding times for preparation or analysis exceeded

 Chemical preservation discrepency noted at time of analysis

Sc Scan Only

TNTC Too numerous to count

TMI Analytical Services, LLC

Laboratory Results Date: 02-Apr-08

CLIENT:

Project:

Midwest Environmental Services

Lab Order: Lab ID:

0804004

0804004-001

Freedom Oil, Champaign

Client Sample ID: JELF-Collection Date:

Matrix:

4/1/2008 10:00:00 AM

SOLID

Analyses	RL	Result	Qual	Units	Date Analyzed
PNAS BY EPA 8270C Acenaphthene	84.0	SW8270C <rl< th=""><th></th><th>(SW3550) µg/Kg-dry</th><th>Analyst: KM 4/1/2008 4:36:00 PM</th></rl<>		(SW3550) µg/Kg-dry	Analyst: KM 4/1/2008 4:36:00 PM
Acenaphthylene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Anthracene	251	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Benz(a)anthracene	251	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 4:36:00 PM
Benzo(a)pyrene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Benzo(b)fluoranthene	417	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 4:36:00 PM
Benzo(g,h,i)perylene	251	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 4:36:00 PM
Benzo(k)fluoranthene	251	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 4:36:00 PM
Chrysene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Dibenz(a,h)anthracene	84.0	<rl< td=""><td>a</td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>	a	µg/Kg-dry	4/1/2008 4:36:00 PM
Fluoranthene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Fluorene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4;36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4;36:00 PM
Indeno(1,2,3-cd)pyrene	84.0	<rl< td=""><td>D</td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>	D	μg/Kg-dry	4/1/2008 4:36:00 PM
Naphthalene	84.0	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 4:36:00 PM
Phenanthrene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
Pyrene	84.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 4:36:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 4:36:00 PM
VOLATILE ORGANIC COMPOUNDS BY GC/MS, BTE Benzene	2.5	SW8260B <rl< td=""><td></td><td>(SW5035/82 ug/Kg-dry</td><td>260B) Analyst: GV 4/1/2008</td></rl<>		(SW5035/82 ug/Kg-dry	260B) Analyst: GV 4/1/2008
Toluene	2.5	5.6		ug/Kg-dry	4/1/2008
Ethylbenzene	2.5	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008</td></rl<>		µg/Kg-dry	4/1/2008
Xylenes, Total	6.2	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008</td></rl<>		µg/Kg-dry	4/1/2008
PERCENT MOISTURE		D2974/SM25406	3		Analyst: ND
Percent Moisture	0,5	20.2		%	4/1/2008
Percent Solids	0.5	79.8		%	4/1/2008

TMI Analytical Services, LLC

Laboratory Results Date: 02-Apr-08

CLIENT:

Lab ID:

Midwest Environmental Services

Lab Order:

0804004

0804004-002

Client Sample ID: LF-2

Collection Date: 4/1/2008 10:00:00 AM

Project: Freedom Oil, Champaign		Matri	x:	SOLID	
Analyses	RL	Result	Qual	Units	Date Analyzed
PNAS BY EPA 8270C		SW8270C		(SW3550)	Analyst: KM
Acenaphthene	89.9	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Acenaphthylene	89.9	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 7:26:00 PM
Anthracene	268	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Benz(a)anthracene	268	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Benzo(a)pyrene	89.9	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 7:26:00 PM
Benzo(b)fluoranthene	447	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Benzo(g,h,i)perylene	268	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Benzo(k)fluoranthene	268	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μ g/Kg-d ry	4/1/2008 7:26:00 PM
Chrysene	89.9	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
Dibenz(a,h)anthracene	89.9	<rl< td=""><td>D</td><td>µg/Kg-đry</td><td>4/1/2008 7:26:00 PM</td></rl<>	D	µg/Kg-đry	4/1/2008 7:26:00 PM
Fluoranthene	89.9	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 7:26:00 PM
Fluorene	89.9	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 7:26:00 PM
Indeno(1,2,3-cd)pyrene	89.9	<rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>	D	µg/Kg-dry	4/1/2008 7:26:00 PM
Naphthalene	89.9	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 7:26:00 PM
Phenanthrene	89.9	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg - dry	4/1/2008 7:26:00 PM
Pyrene	89.9	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 7:26:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 7:26:00 PM
OLATILE ORGANIC COMPOUNDS BY GC/MS, BTE Benzene	164	SW8260B 280		(SW5035/8; µg/Kg-dry	260B) Analyst: GV 4/1/2008
Toluene	164	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008</td></rl<>		μg/Kg-dry	4/1/2008
Ethylbenzene	164	201		μg/Kg-dry	4/1/2008
Xylenes, Total	410	1140		μg/Kg-dry	4/1/2008
ERCENT MOISTURE		D2974/SM25400	;		Analyst: ND
Percent Moisture	0,5	25.5		%	4/1/2008
Percent Solids	0.5	74.5		%	4/1/2008

TMI Analy	ytical Services, LLC	L	aboratory Res	ults	Date: 02-Apr-08				
CLIENT: Lab Order: Lab ID: Project:	Midwest Environmental Service 0804004 0804004-003 Freedom Oil, Champaign	=	Client Collec Matri	tion I	ple ID: Set [Pate: 4/1/200 SOLID	F-3 8 10:00:00 AM			
Analyses		RL	Result	Qual	Units	Date Analyzed			
PNAS BY EPA 82	-	83,8	SW8270C <rl< td=""><td></td><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/1/2008 8:09:00 PM</td></rl<>		(SW3550) µg/Kg-dry	Analyst: KM 4/1/2008 8:09:00 PM			
Acenaphthyle		83.8	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
Anthracene		250	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
Benz(a)anthra	ncene	250	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 8:09:00 PM			
Benzo(a)pyrer		83.8	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
Benzo(b)fluora		416	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 8:09:00 PM			
Benzo(g,h,i)po		250	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 8:09:00 PM			
Benzo(k)fluora	-	250	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 8:09:00 PM			
Chrysene		83.8	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		μg/Kg-dry	4/1/2008 8:09:00 PM			
Dibenz(a,h)an	ithracene	83.8	<rl< td=""><td>D</td><td>μg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>	D	μg/Kg-dry	4/1/2008 8:09:00 PM			
Fluoranthene		83.8	<rl< td=""><td></td><td>pg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		pg/Kg-dry	4/1/2008 8:09:00 PM			
Fluorene		83.8	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
Indena(1,2,3-	cd)pyrene	83.8	<rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>	D	µg/Kg-dry	4/1/2008 8:09:00 PM			
Naphthalene		83.8	514		μg/Kg-dry	4/1/2008 8:09:00 PM			
Phenanthrene	•	83.8	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
Pyrene		83.8	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/1/2008 8:09:00 PM</td></rl<>		µg/Kg-dry	4/1/2008 8:09:00 PM			
VOLATILE ORG	ANIC COMPOUNDS BY GC/MS, BTE	311	SW8260B 923		(SW5035/82 µg/Kg-dry	260B) Analyst: GV 4/1/2008			
Toluene		311	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/1/2008</td></rl<>		μg/Kg-dry	4/1/2008			
Ethylbenzene		311	2150		μα/Kg-dry	4/1/2008			
Xylenes, Tota		777	2960		µg/Kg-dry	4/1/2008			
PERCENT MOIS	TURE		D2974/SM2540	3		Analyst: ND			
Percent Moist	ште	0.5	20.0		%	4/1/2008			

80.0

4/1/2008

Percent Solids

K
-C

RELINQUISHED BY:	+	SAMPLED BY:		EI	ADDITIONAL INFORMATION OR INSTRUCTIONS	tr	or	ic	F	ilir	g	F	е	e	V	d	(1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18-7-	ראט- א-1	C SAMPLE NO.	2110 Republic Street Springfield, Illinois 62702 (217) 698-0642 FAX (217)698-06 tri@trillab.com PROJECT LOCATION: FFEEDEM 1406 N. Prospect 1406 N. Prospect Champaign, 14 REMORT TO: MWE REMORE TO: MWE PRONE: FRONE:	TMI Analytical Services, LLC
	trus		ļ		ON OR I					ļ								E	+	HID&	DATE	100 FAX (217)698-0656 FAX (217)698-0656 PAY 05 FAX CT 14GN 1 L 14GN 1 L	ices, LL
	Low				ISTRUCT													4	-	M¥01	TIME MAIT	1 (1)	Ĉ
	3				IONS													-603	-602	100-4004080	LAB NO.		
L	1	1			֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓				L									×	X	\geq		sorib	DESC
DATE	DATE	DATE	{				}-		╀╌	┝	\sqcup	Н		Н		-		┞	-	\vdash		AQUEOUS PRESERVATIVE: 1=HCl 2= H2SO, 3=NaOH	DESCRIPTION
r	I	_																-				4= HNO ₃ EXT. TOTAL DISSOLVED TCLP	
	106							L	L										L			RCRA: As Cd Cr Ba Ag Pb Hg Se Cu Ni Zn	METALS
	+.		1				-		┝	┝						-		_	_	-		S = SWAB AM = AIR MICROVAC	
TIME	╂	I A																				BACTERIAL PLATE CNTS: TOTAL SELECTIVE	MICROBIOLOGY
	NOON					_		H	╀		Н			_		Н		_	L	-		FUNGI: QUALITATIVE QUANTITATIVE TOTAL COLIFORMS / E.COLI	<u>8</u>
1	Z			•					┢					-				X	X	X		BTEX) 8021B, 8260B), 5035, MTBE Circle)	₹
REC	REC	RCC		1			П															EPA 608,8081/8082 PESTICIDES / PCBs (CHCLE)	- (
RECEIVED IN LABORATORY BY:	RECEIVED BY:	RECEIVED BY:				_	_		┞	_	Н		_	_		Н			L	L		EPA 624 / 82608 VOLATILE ORGANICS EPA 625 / 8270C SEMI - VOLATILE ORGANICS	
Ž	BY:) BY:	,				\vdash		Ļ	_	Н					Щ			1				옸
BOZ		١,							-	-	Н		\dashv	-		_		X.	À	Χ		EPA 625 8270C PNAS EPA 8151 CHLORINATED HERBICIDES	ORGANICS
ATO	}				1				┢	\vdash		┪		_		Н			\vdash			TCLP: (CIRCLE) ORGANICS, VOLATILE.	°
lã B					l	-	Н		┝	Н	H	ᅱ	_	\dashv	\dashv	Н			H	-		SEMI - VOLATILE, PEST&HERB TPH OA1 OA2 (CIRCLE)	
	1			l	1			Н	H	Н	H		┪	┪	_				_	_		OTHER	1
起																						PAINT FILTER	7
Ľ	}												_!									pH	
15		}				4			Ш	-	Ц	4	4	_ {			_		_	Ш		FLASHPOINT/IGNITABILITY	- [
13	\$				ŀ	\dashv			_	Н	Н	4	\dashv			\dashv		_	_	Н		OIL AND GREASE	۵
r	İ	1				\dashv	_		-	Н	\dashv	\dashv	\dashv	-		\dashv	┥	_	-	Н		CYANIDE: TOTAL REACTIVE (CIRCLE) SULFIDE: TOTAL REACTIVE (CIRCLE)	GENERAL CHEMISTRY
1	1				ŀ	Ⅎ				Н	\forall	┪	┪	┪	_	┥	┪	\dashv	<u> </u>	Н		PHENOLS	٤
1		} }		} }	\	┪			Η	H	\dashv	┪	┪	_		\dashv	7	X	1	$\overline{}$		Sottable Solids 30 SULIPS	崇
É	ē	ē			ľ	T							╗	7			┪					NITROGEN - TYPES	\$
DATE	DATE	á																				PHOSPHOROUS, CHLORIDES (CIRCLE)	۲
E	ļ_				<u>[</u>	\Box		\Box				\rfloor	\Box	\Box		\Box	\Box				×	BOD (SDAY)	
80						4		4		Ц	4	_	4	}	_		4		_	Ш		CBOD]
		닠				4	_	4	Щ	Щ		4	4	4	_	_	4	_		_		Odor, Turbidity	_
K	ME.	<u> </u>				_	_]	_	Ц	Ш	Ц	_	4	_	_	╚	_	υ U	3		_	TAL NUMBER OF SAMPLE CONTAINERS	او
TIME NOUN	_																	4-0	A-C	AA	REMARKS	Standard Turn Around Time: 7-10 Working Days	DUE DATS3

Page of

Sample acceptance policy for TMI Analytical Services

The following outlines the circumstances under which samples shall be accepted or rejected. Data from any samples that de not meet the following criteria will be flagged on the laboratory results report. This sample acceptance policy is made available to sample collection personnel on the back of the chain of custody form.

The Chain of Custody (COC) form must include the following.

Location of sample collection

- Date and TIME of sample collection (each sample must have date and time)
- Sample collector's name
- Preservation type(s)
- Sample type-matrix
- Any special remarks/instructions about the sample

Projects cannot be properly logged in until resolution of discrepancies on the COC are resolved, thus delaying sample analysis time. Turnaround time is calculated from the day following receipt of samples in the laboratory, after resolution of any discrepancies.

Samples must be labeled to include a unique identification, and must be labeled with indelible ink. Labels used must be. water resistant. (TMI will provide labels with sample bottles.)

Appropriate sample bottles will be supplied by the laboratory. Clients may refer to TMI's Sample Bottle Guide for correct bottles and preservatives.

In order to meet specific sample holding time requirements, samples should be submitted as soon as possible after collection. Holding times may be referenced in TMI's Sample Bottle Guider. Samples with hold times of 48 hours to 14 days received with less than 75% of their holding time may incur rush charges.

Express shipment of refrigerated sample packages is required to prevent compromising the storage temperature. Samples should be packaged to prevent breakage and properly preserved. Packages to be shipped are to be received during normal business hours on normal working days. Special arrangements can be made as needed. Samples that are hand delivered to the lab are considered acceptable only if there is evidence that the chilling process has begun such as arrival on ice and sampling had occurred with the past 12 hours. All other samples must have a temperature of 4 +/- 2°C to comply with temperature requirements. Compliance with sample temperature is noted at time of sample delivery;

It is the responsibility of the sampler to ensure correct preservation of samples. TMI will provide sample bottles with preservative added, but this does not ensure proper preservation with all samples. Correct preservation of samples is checked at time of analysis. Analysis will proceed with samples in non-compliance, and results will be qualified, indicating a chemical preservation discrepancy was noted at time of analysis.

Adequate sample volume is required to perform the requested test. It is the responsibility of the sample collector to provide enough sample to the lab. Required sample volumes may be referenced in TMI's Sample Bottle Guide. TMI is happy to provide sample bottle kits for specific projects. At least a one-day notice for kits aids in our service to you and our other clients

When samples show sign of damage or contamination, the technical director will evaluate degree of damage or contamination to determine whether sample has been compromised for analysis. Samples may be rejected due to damage, contamination, or improper sample containers. The client will be notified by phone as soon as a rejection determination has been made, and arrangements for disposal of sample made then. Should multiple sample bottles have been submitted and the lab is able to perform testing from another container, analysis will proceed with a notation made on the COC as to what sample jar was damaged and disposed of.

Results issued for analysis 8021B are based upon single column retention time confirmation. Clients who desire a secondary form of confirmation should request analysis by 8260B.

Should TMI be unable to perform a requested analysis, that test will be subcontracted to a NELAP accredited laboratory and reported as subcontracted on the laboratory results report.

04/17/2008 10:44

Ţ

Date: 16-Apr-08

TMI Analytical Services, LLC

NELAC Accredited #100447

2110 N. Republic St. Springfield, IL 62702

tmi@tmilab.com

217-698-0642 Fax: 217-698-0656

CLIENT: Project:

Midwest Environmental Services

TMI Analytical Services. LLC

Freedom Oil Company, 08-24, Champaign 0804042 Lab Order:

CASE NARRATIVE

16-Apr-08

Andrew Fetterolf Midwest Environmental Services P.O. Box 614

Tremont, IL 61568-0614

TEL: (309) 925-5551 FAX (309) 925-5606

RE: Freedom Oil Company, 08-24, Champaign

Order No.: 0804042

Dear Andrew Fetterolf:

TMI Analytical Services, LLC received 17 sample(s) on 4/4/2008 for the analyses presented in the following report.

There were no problems with the analyses unless noted on the case narrative or qualified on the analytical results. The final report includes this cover letter, analytical report and a copy of the chain of custody. It may also include but not be limited to letters of explanation or raw data.

Erica Treadway

Assistant Laboratory Manager

Treadivery

Report Qualifiers:

Increased reporting limit due to required dilution

Analyte detected in the associated Method Blank

Analyte failed to meet the required acceptance criteria for duplicate analysis

M Matrix interference(s) identified

RL Reporting Limit

SUB Subcontracted

All samples were received and analyzed within method required holding times unless qualified in the report. Samples met specified acceptance criteria except where noted below or qualified on the report.

D=RL has been set at or above method detection limit and below limit of quantitation.

восериялсе спісти

Value shove quantitation range

H Holding times for preparation or analysis exceeded

The laboratory control sample failed to meet the required

Chamical preservation discrepency noted at time of analysis

Sc Scan Only

TNTC Too numerous to count

Verification standard recovery failed to meet the required acceptance criteria.

TMI Analytical Services, LLC

Laboratory Results Date: 16-Apr-08

Midwest Environmental Services

0804042 Lab Order:

CLIENT:

Lab ID:

0804042-001

Client Sample ID: EF

Collection Date:

4/2/2008 2:00:00 PM

TMI Analytical Services, LL	LLC	Services,	al	Analytica	TMI
-----------------------------	-----	-----------	----	-----------	------------

CLIENT: Midwest Environmental Services

0804042 Lab Order:

Lab ID: 0804042-002

Freedom Oil Company, 08-24, Champaign Project:

Laboratory Results Date: 16-Apr-08

Client Sample ID: WF

Collection Date: 4/2/2008 2:10:00 PM

Matrix:

SOLID

Project: Freedom Oil Company, 08-24, Champi	ign	Matri	x:	SOLID							
Analyses	RL	Result	Qua	Units	Date Analyzed	Analyses	RL	Result	Qual	Units	Date Analyzed
PNAS BY EPA 1270C		SW8270C		(SW3550)	Analyst: KM	PNAS BY EPA 827DC		SW8270C		(SW3550)	Analyst: KM
Acenaphthene	81,3	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Acenaphthene</td><td>77.7</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53;00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 4:10:00 PM	Acenaphthene	77.7	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53;00 PM</td></rl<>		µg/Kg-dry	4/8/2008 4:53;00 PM
Acenaphthylene	B1.3	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2006 4:10:00 PM</td><td>Acenaphthylene</td><td>77.7</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<></td></rl<>		μg/Kg-dry	4/8/2006 4:10:00 PM	Acenaphthylene	77.7	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 4:53:00 PM
Anthracene	243	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Anthracene</td><td>232</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53;00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 4:10:00 PM	Anthracene	232	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53;00 PM</td></rl<>		µg/Kg-dry	4/8/2008 4:53;00 PM
Benz(a)anthracene	243	<rl< td=""><td></td><td>μα/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Benz(a)anthracene</td><td>232</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008 4:53:00 PM</td></rl<></td></rl<>		μα/Kg-dry	4/8/2008 4:10:00 PM	Benz(a)anthracene	232	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008 4:53:00 PM</td></rl<>		µg/Kg-dry	4/9/2008 4:53:00 PM
Benzo(a)pyrene	81.3	<rl< td=""><td></td><td>µg∕Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Benzo(a)pyrene</td><td>77.7</td><td><rl< td=""><td></td><td>µg/Кд-о́гу</td><td>4/8/2008 4:53:00 PM</td></rl<></td></rl<>		µg∕Kg-dry	4/8/2008 4:10:00 PM	Benzo(a)pyrene	77.7	<rl< td=""><td></td><td>µg/Кд-о́гу</td><td>4/8/2008 4:53:00 PM</td></rl<>		µg/Кд-о́гу	4/8/2008 4:53:00 PM
Benzo(b)fluoranthene	404	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Benzo(b)fluoranthene</td><td>386</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 4:10:00 PM	Benzo(b)fluoranthene	386	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 4:53:00 PM
Benzo(g,h,i)perylene	243	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Benzo(g.h.i)perylene</td><td>232</td><td><₹L</td><td></td><td>ре⁄Жа-ску</td><td>4/9/2008 4:53:00 PM</td></rl<>		μg/Kg-dry	4/8/2008 4:10:00 PM	Benzo(g.h.i)perylene	232	<₹L		ре⁄Жа-ску	4/9/2008 4:53:00 PM
Benzo(k)fluoranthene	243	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Senzo(k)fluoranihene</td><td>232</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<></td></rl<>		μ g/Kg-dry	4/8/2008 4:10:00 PM	Senzo(k)fluoranihene	232	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 4:53:00 PM
Chrysene	81.3	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Chrysene</td><td>77.7</td><td>≪RL</td><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<>		μ g/Kg-dry	4/8/2008 4:10:00 PM	Chrysene	77.7	≪RL		µg/Kg-dry	4/8/2008 4:53:00 PM
Dibenz(a,h)znithracene	B1.3	<rl< td=""><td>D</td><td>μg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Oibenz(a,h)anthracene</td><td>77.7</td><td><rl< td=""><td>D</td><td>µg/Кд-фгу</td><td>4/8/2008 4:53:00 PM</td></rl<></td></rl<>	D	μ g/Kg-dry	4/8/2008 4:10:00 PM	Oibenz(a,h)anthracene	77.7	<rl< td=""><td>D</td><td>µg/Кд-фгу</td><td>4/8/2008 4:53:00 PM</td></rl<>	D	µg/Кд-фгу	4/8/2008 4:53:00 PM
Fluoranthene	81,3	<rl< td=""><td>_</td><td>μg/Kg-dry</td><td>4/8/2008 4:10:00 PM</td><td>Fluoranthene</td><td>77.7</td><td>≪RL</td><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></rl<>	_	μ g/Kg-dry	4/8/2008 4:10:00 PM	Fluoranthene	77.7	≪RL		µg/Kg-dry	4/8/2008 4:53:00 PM
Fluorene	81.3	∢RL		pg/Kg-dry	4/8/2008 4:10:00 PM	Fluorene	77.7	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008 4:53:00 PM</td></rl<>		µg/Kg-dry	4/9/2008 4:53:00 PM
Indeno(1,2,3-cd)pyrene	81.3	≺RL	D	µg/Kg-dry	4/8/2008 4:10:00 PM	Indeno(1,2,3-cd)pyrene	77.7	⋖RL	D	µg/Kg-dry	4/8/2008 4:53:00 PM
Naphthalene	81.3	≺RL	_	μg/Kg-dry	4/8/2008 4:10:00 PM	Naphthalene	77.7	≪RL		µg/Kg-dry	4/8/2008 4:53:00 PM
Phenanthrene	81.3	₹RL		μ g/Kg-dry μ g/Kg-dry	4/8/2008 4:10:00 PM	Phenanthrene	77.7	⋖RL		µg/Kg-dry	4/8/2008 4:53:00 PM
Pyrane	81.3	×RL ≪RL		pg/Kg-dry	4/8/2008 4:10:00 PM	Pyrene	77.7	<r⊥< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 4:53:00 PM</td></r⊥<>		µg/Kg-dry	4/8/2008 4:53:00 PM
гугале	01.3	- NAL		pgracus	45 2000 4, 10.00 F M	VOLATILE ORGANIC COMPOUNDS BY GC/MS, BTE	,	SW8260B		(SW5035/82	160B) Analyst: GV
VOLATILE ORGANIC COMPOUNDS BY GCIMS, BTE		\$W8260B		(SWS035/82		Methyl tert-butyl ether	2.3	48L		pg/Kg-dry	4/6/2008
Methyl teri-butyl ether	2.3	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008</td><td>Bertzene</td><td>2.3</td><td>≪L</td><td></td><td>ug/Kg-dry</td><td>4/8/2008</td></rl<>		µg/Kg-dry	4/9/2008	Bertzene	2.3	≪L		ug/Kg-dry	4/8/2008
Benzene	2.3	4.4		µg/Kg-dry	4/9/2008	Toluene	2.3	3.0		µg/Kg-dry	4/8/2008
Totuene	2.3	4.1		µg/Kg-dry	4/9/2008	Elhylbenzene	2.3	8.0		μg/Kg-dry	4/8/2008
Ethylbenzene	2.3	26.4		µg/Kg-dry	4/9/2008	Xylenes, Total	5.8	23,1		µg/Kg-dry	4/8/2008
Xylenes, Total	5.8	45.2		µg/Kg-dry	4/9/200B	•				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
PERCENT MOISTURE		D2974/SM2540	G		Analyst: ND	PERCENT MOISTURE	0.5	D2974/SM25400 13.8	3	%	Analyst: ND 4/7/2008
Percent Moisture	0.5	17.6		%	4/7/2008	Percent Moisture ; Percent Solids	0.5	86.2		%	4/7/2008
Percent Solids	0.5	82.4		%	4/7/2008	reice/it solids	0.5	50.2		70	4/1/2000
						I					

4/7/2008

85.1

Electronic Filing: Received, Clerk's Office 1/6/2021

TMI Analyti	ical Services, LLC	Laboratory Result	ts Date: 16-Apr	-08	TMI Analytical Services, LLC	Lal	boratory Results	Date: 16-Apr	·.08
CLIENT: Lab Order: Lab ID: Preject:	Midwest Environmental Services 0804042 0804042-003 Freedom Oil Company, 08-24, Champaign	Client Sa Collection Matrix:	imple ID: NW n Date: 4/2/200 SOLID	B 2:20:00 PM	CLIENT: Midwest Environmental Set Lab Order: 0804042 Lab ID: 0804042-004 Project: Freedom Oil Company, 08-24, Co		Cilent Samp Collection D Matrix:		8 2:30:00 PM
Analyses	RI	, Result Q	ual Units	Date Analyzed	Analyses	RL	Result Qual	Units	Date Analyzed
PNAS BY EPA 8270 Acensphilhene	77.6	SW8270C	(\$W3550) µg/Kg-dry	Analyst: KM 4/8/2008 5:36;00 PM	PNAS BY EPA 8279C Acenaphthene	78.7	SW8270C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/8/2008 6:19:00 PM</td></rl<>	(SW3550) µg/Kg-dry	Analyst: KM 4/8/2008 6:19:00 PM
Acenaphthylene	77.5	≪L	pg/Kg-dry	4/8/2008 5:36:00 PM	Acenaphthylene	76,7	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 6:19:00 PM</td></rl<>	μg/Kg-dry	4/9/2008 6:19:00 PM
Anthracene	232	. ⊲RL	µg/Kg-dry	4/8/2008 5:36:00 PM	Anthracene	235	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Benz(a)anthrace	ne 232	<rl< td=""><td>μg/Kg-dry</td><td>4/8/2008 5:36:00 PM</td><td>Benz(a)anthracene</td><td>235</td><td>≺R⊥</td><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	μ g/Kg-d ry	4/8/2008 5:36:00 PM	Benz(a)anthracene	235	≺R⊥	µg/Kg-dry	4/8/2008 6:19:00 PM
Benzo(a)pyrene	77.5	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 5:36:00 PM</td><td>Benzo(a)pyrene</td><td>78.7</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 5:36:00 PM	Benzo(a)pyrene	78.7	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Benzo(h)fluoranti	nene 386	. ∢RL	µg/Kg-dry	4/8/2008 5:36:00 PM	Benzo(b)fluoranthene	391	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Benzo(g,h,i)pcry		. ≪RL	µg/Kg-dry	4/8/2008 5:38:00 PM	Benzo(g.h.i)perylene	235	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Benzo(k)fluorant		·	μ g/Kg-d ry	4/8/2008 5:36:00 PM	Benzo(k)fluoranthene	235	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Chrysena	77.0	. ⟨RL	μ g/ Kg-dry	4/8/2008 5:36:00 PM	Chrysene	78.7	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Dibenz(s,h)anthr	scene 77.0	; <rl d<="" td=""><td>μg/Kg-dry</td><td>4/8/2008 5:36:00 PM</td><td>Diberz(a,h)anthracene</td><td>78.7</td><td><rl d<="" td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl></td></rl>	μg/Kg-dry	4/8/2008 5:36:00 PM	Diberz(a,h)anthracene	78.7	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl>	µg/Kg-dry	4/8/2008 6:19:00 PM
Fluoranthene	77.0	s ⊲RL	µg∕Кg-dгу	4/8/2008 5:36:00 PM	Fluoranthene	78.7	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Fluorene	77.0	s ⊲RL	µg/Kg-dry	4/8/2008 5:36:00 PM	Fluorene	78.7	54.0	µg/Kg-dry	4/8/2008 6:19:00 PM
Indeno(1,2,3-cd)	pyrene 77.0	i ≪RLD	μ g/ Kg-dry	4/8/2008 5:36:00 PM	Indeno(1,2,3-cd)pyrene	78.7	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/8/2008 8:19:00 PM</td></rl>	µg/Kg-dry	4/8/2008 8:19:00 PM
Naphthalene	77.0	121	µg/Kg-dry	4/8/2008 5:36:00 PM	Naphthalene	78.7	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:19:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:19:00 PM
Phenanthrene	77.0	106	µg/Kg-dry	4/8/2008 5:36:00 PM	Phenanthrene	78.7	79.1	µg/Kg-dry	4/8/2008 6:19:00 PM
Pyrene	77,1	i ⊲RL	h8/Kg-qu	4/8/2008 5:36:00 PM	Pyrane	78.7	≺RL	havka-aux	4/8/2008 5:19:00 PM
VOLATILE ORGAN	IC COMPOUNDS BY GC/MS, BTE either 14	\$W8260B <\re{K}	(SW5035/82 µg/Kg-dry	160B) Analyst: GV 4/8/2008	VOLATILE ORGANIC COMPOUNDS BY GC/MS, E Methyl tent-butyl ether	3TE 2,4	\$₩6260B <rl< td=""><td>(SW5035/82 µg/Kq-dry</td><td>1808) Analyst: GV 4/8/2008</td></rl<>	(SW5035/82 µg/Kq-dry	1808) Analyst: GV 4/8/2008
Benzene	14	410	µg/Kg-dry	4/8/2006	Benzene	2.4	18.6	µg/Kq-dry	4/8/2008
Toluene	14		µg/Kg-dry	4/8/2008	Toluene	2.4	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008</td></rl<>	µg/Kg-dry	4/8/2008
Ethylberizane	14	2490	ug/Kg-dry	4/8/2008	Ethylbenzene	2.4	18,3	h@/Kg-dry	4/8/2008
Xylenes, Total	35		µg/Kg-dry	4/8/2008	Xylenes, Total	5.9	118	µg/Kg-dry	4/8/2008
PERCENT MOISTU		D2974/SM2540G 5 13.7	%	Analyst: ND 4/7/2008	PERCENT MOISTURE Percent Moisture	0,5	D2974/SM2540G 14,9	%	Analyst; ND 4/7/2008

Percent Solids

86.3

4/7/2008

Percent Solids

Lab Order: 080 Lab ID: 080	lwest Environmental Service: 4042 4042-005 dom Oil Company, 08-24, Champo			ection l	ple ID: EW Date: 4/2/200 SOLID	8 2:40:00 PM	CLIENT: Midwest Environmental Lab Order: 0804042 Lab ID: 0804042-006 Project: Freedom Oil Company, 08-24.			t Sample rtion Dat ix:		D8 2:50:00 PM
Analyses		RL	Resul	t Qua	d Units	Date Analyzed	Analyses	RL.	Result	Qual (nits	Date Analyzed
PNAS BY EPA 8270C		79.2	SW8270C 80.9		(SW3550) µg/Kg-dry	Analyst: KM 4/8/2008 7:02:00 PM	PNAS BY EPA 8270C Acenaphthene	79.4	SW8270C <rl< th=""><th></th><th>(SW3550) pg/Kg-dry</th><th>Analyst: KM 4/8/2008 7:45:00 PM</th></rl<>		(SW3550) pg/Kg-dry	Analyst: KM 4/8/2008 7:45:00 PM
Acenaphithylene		79.2	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2006 7:02:00 PM</td><td>Acenaphthylene</td><td>79.4</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2006 7:02:00 PM	Acenaphthylene	79.4	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		ug/Kg-dry	4/8/2008 7:45:00 PM
Anthracene		236	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2009 7:02:00 PM</td><td>Anthracene</td><td>237</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		μg/Kg-dry	4/8/2009 7:02:00 PM	Anthracene	237	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		ug/Kg-dry	4/8/2008 7:45:00 PM
Benz(a)anthracene		236	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2009 7:02:00 PM</td><td>Benz(a)enthracene</td><td>237</td><td><rl.< td=""><td></td><td>g/Kg-d/y</td><td>4/8/2008 7:45:00 PM</td></rl.<></td></rl<>		µg/Kg-dry	4/8/2009 7:02:00 PM	Benz(a)enthracene	237	<rl.< td=""><td></td><td>g/Kg-d/y</td><td>4/8/2008 7:45:00 PM</td></rl.<>		g/Kg-d/y	4/8/2008 7:45:00 PM
Benzo(a)pyrene		79.2	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Benzo(a)pyrene</td><td>79.4</td><td><rl< td=""><td>ĺ</td><td>/g/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		ug/Kg-dry	4/8/2008 7:02:00 PM	Benzo(a)pyrene	79.4	<rl< td=""><td>ĺ</td><td>/g/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>	ĺ	/g/Kg-dry	4/8/2008 7:45:00 PM
Benzo(h)fluoranthene	<u>!</u>	394	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Benzo(b)fluoranthene</td><td>395</td><td><rl< td=""><td>1</td><td>g/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		μg/Kg-dry	4/8/2008 7:02:00 PM	Benzo(b)fluoranthene	395	<rl< td=""><td>1</td><td>g/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>	1	g/Kg-dry	4/8/2008 7:45:00 PM
Benzo(g,h,i)perylene		236	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Benzo(g,h,i)perylene</td><td>237</td><td><rl< td=""><td>ĺ</td><td>ug/Kg-dry</td><td>4/B/2008 7:45:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 7:02:00 PM	Benzo(g,h,i)perylene	237	<rl< td=""><td>ĺ</td><td>ug/Kg-dry</td><td>4/B/2008 7:45:00 PM</td></rl<>	ĺ	ug/Kg-dry	4/B/2008 7:45:00 PM
Benzo(k)fluoranthene	1	236	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Benzo(k)Nuoranthena</td><td>237</td><td><rl< td=""><td>1</td><td>g/Kg-dry</td><td>4/9/2008 7:45:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 7:02:00 PM	Benzo(k)Nuoranthena	237	<rl< td=""><td>1</td><td>g/Kg-dry</td><td>4/9/2008 7:45:00 PM</td></rl<>	1	g/Kg-dry	4/9/2008 7:45:00 PM
Chrysene		79.2	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Chrysene</td><td>79.4</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 7:02:00 PM	Chrysene	79.4	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		ug/Kg-dry	4/8/2008 7:45:00 PM
Dibenz(a,h)anthracen	ne	79.2	<rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Dibenz(a,h)anthracene</td><td>79.4</td><td><rl< td=""><td>D</td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>	D	µg/Kg-dry	4/8/2008 7:02:00 PM	Dibenz(a,h)anthracene	79.4	<rl< td=""><td>D</td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>	D	ug/Kg-dry	4/8/2008 7:45:00 PM
Fluoranthene		79.2	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Fluorenthene</td><td>79.4</td><td><rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		µg/Kg-dry	4/8/2008 7:02:00 PM	Fluorenthene	79.4	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 7:45:00 PM
Fluorens		79.2	<rt.< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Fluorene</td><td>79.4</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rt.<>		μg/Kg-dry	4/8/2008 7:02:00 PM	Fluorene	79.4	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		ug/Kg-dry	4/8/2008 7:45:00 PM
Indeno(1,2,3-cd)pyres	ne	79.2	<rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>indeno(1,2,3-cd)pyrene</td><td>79.4</td><td><rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>	D	µg/Kg-dry	4/8/2008 7:02:00 PM	indeno(1,2,3-cd)pyrene	79.4	<rl< td=""><td>D</td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>	D	µg/Kg-dry	4/8/2008 7:45:00 PM
Naphthalene		79.2	147		µg/Kg-dry	4/8/2008 7:02:00 PM	Naphthaiene	79.4	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 7:45:00 PM
Phenanthrene		79.2	164		μg/Kg-dry	4/8/2008 7:02:00 PM	Phenanthrene	79.4	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		µg/Kg-dry	4/8/2008 7:45:00 PM
Pyrene		79.2	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008 7:02:00 PM</td><td>Pyrene</td><td>79.4</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<></td></rl<>		μg/Kg-dry	4/8/2008 7:02:00 PM	Pyrene	79.4	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008 7:45:00 PM</td></rl<>		ug/Kg-dry	4/8/2008 7:45:00 PM
VOLATILE ORGANIC C Methyl terl-butyl ethe	OMPOUNDS BY GC/MS, BTE	10.3	SW8260B <rl< td=""><td></td><td>(SW5035/82 µg/Kg-dry</td><td>260B) Analyst: GV 4/8/2008</td><td>VOLATILE ORGANIC COMPOUNDS BY GC/MS Methyl terl-bulyl ether</td><td>S, BTE 2.3</td><td>SW8260B <rl< td=""><td></td><td>(8W5035/8; µg/Kg-dry</td><td>260B) Analyst: GV 4/9/2008</td></rl<></td></rl<>		(SW5035/82 µg/Kg-dry	260B) Analyst: GV 4/8/2008	VOLATILE ORGANIC COMPOUNDS BY GC/MS Methyl terl-bulyl ether	S, BTE 2.3	SW8260B <rl< td=""><td></td><td>(8W5035/8; µg/Kg-dry</td><td>260B) Analyst: GV 4/9/2008</td></rl<>		(8W5035/8; µg/Kg-dry	260B) Analyst: GV 4/9/2008
Benzene		10.3	50.6	;	μ g/Kg-dr y	4/8/2008	Benzene	2.3	3,5	М	ug/Kg-dry	4/8/2008
Toluene		10.3	<rl< td=""><td></td><td>μg/Kg-dry</td><td>4/8/2008</td><td>Toluena</td><td>2.3</td><td><rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008</td></rl<></td></rl<>		μg/Kg-dry	4/8/2008	Toluena	2.3	<rl< td=""><td></td><td>ug/Kg-dry</td><td>4/8/2008</td></rl<>		ug/Kg-dry	4/8/2008
Eihylbenzena		10.3	296	;	µg/Kg-dry	4/8/2008	Ethylbenzene	2.3	7.6	м	µg/Kg-dry	4/8/2008
Xylenes, Total		25.7	312	:	µg/Kg-dry	4/8/2008	Xylenes, Total	5.8	25.5	м	µg/Kg-dry	4/8/2008
PERCENT MOISTURE Percent Moisture		0.5	D2974/SM254 15.4		%	Analyst: ND 4/7/2008	PERCENT MOISTURE Percent Moisture	0.5	D2974/SM2540 15.8		*	Analyst: ND 4/7/2008
Percent Solids		0.5	84.6		%	4/7/2008	Percent Solids	0.5	84.4		*	4/7/2008

Date: 16-Apr-08

Client Sample ID: XF2

Laboratory Results

Electronic Filing: Received, Clerk's Office 1/6/2021

CLIENT:

Lab Order:

TMI Analytical Services, LLC

0804042

Midwest Environmental Services

TMI Analytical Services, LLC

Laboratory Results Date: 16-Apr-08

CLIENT: Lab Order: Midwest Environmental Services

0804042

Client Sample ID: XF!

Lab ID: 0804042-007 Project: Freedom Oil Company, 08-24, Char	mpaign	Collection D Matrix:	ate: 4/3/200 SOLID	8 10:00:00 AM	Lab ID: 0804042-008 Project: Freedom Oil Corrpany, 08-24, Champ	eign	Collection I Matrix:	Date: 4/3/200 SOLID	MA 00:01:01 80
Awalyses	RL	Result Qual	Units	Date Analyzed	Analyses	RL	Result Qual	Units	Date Analyzed
PNAS BY EPA 8270C Acenaphthene	84.2	5W8270C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/9/2008 8:14:00 AM</td><td>PNAS BY EPA 8270C Aceraphthene</td><td>79.1</td><td>SW8270C</td><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/8/2008 8:27:00 PM</td></rl<>	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2008 8:14:00 AM	PNAS BY EPA 8270C Aceraphthene	79.1	SW8270C	(SW3550) µg/Kg-dry	Analyst: KM 4/8/2008 8:27:00 PM
Acenzphthylens	84.2	⋖RL	μg/Kg-dry	4/9/2008 8:14:00 AM	Acenaphthylene	79.1	≪RL	µg/Kg-dry	4/8/2008 6:27:00 PM
Anthracene	251	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8;14:00 AM</td><td>Anthracene</td><td>236</td><td>≪RL</td><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	µg/Kg-dry	4/9/2008 8;14:00 AM	Anthracene	236	≪RL	µg/Kg-dry	4/8/2008 8:27:00 PM
Benz(a)anthracene	251	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 B:14:00 AM</td><td>Benz(a)anthracene</td><td>236</td><td><ril< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></ril<></td></rl<>	µg/Kg-dry	4/9/2008 B:14:00 AM	Benz(a)anthracene	236	<ril< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></ril<>	µg/Kg-dry	4/8/2008 8:27:00 PM
Benzo(a)pyrene	84.2	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2006 B;14:00 AM</td><td>Benzo(a)pyrens</td><td>79.1</td><td>⊲RL</td><td>µg/Кg-фу</td><td>4/9/2008 8:27:00 PM</td></rl<>	μg/Kg-dry	4/9/2006 B;14:00 AM	Benzo(a)pyrens	79.1	⊲RL	µg/Кg-фу	4/9/2008 8:27:00 PM
Benzo(s)fluoranthene	418	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:14:00 AM</td><td>Benzo(b)ituoranihene</td><td>393</td><td>≪RL</td><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	μ g/Kg-dry	4/9/2008 8:14:00 AM	Benzo(b)ituoranihene	393	≪RL	µg/Kg-dry	4/8/2008 8:27:00 PM
Benzo(g,h,i)perylene	251	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8;14:00 AM</td><td>Benzo(g,h,i)perylene</td><td>236</td><td><₹L</td><td>μg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	µg/Kg-dry	4/9/2008 8;14:00 AM	Benzo(g,h,i)perylene	236	< ₹L	μg/Kg-dry	4/8/2008 8:27:00 PM
Berizo(k)fluoranthene	251	<rl< td=""><td>µд∕Кд-агу</td><td>4/9/2008 6:14:00 AM</td><td>Benzo(k)fluoranihenė</td><td>236</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<></td></rl<>	µд∕Кд-агу	4/9/2008 6:14:00 AM	Benzo(k)fluoranihenė	236	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 8:27:00 PM
Chrysene	84.2	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 B:14:00 AM</td><td>Chrysana</td><td>79.1</td><td><rl< td=""><td>µg∕Kg-dry</td><td>4/8/2008 B:27:00 PM</td></rl<></td></rl<>	μg/Kg-dry	4/9/2008 B:14:00 AM	Chrysana	79.1	<rl< td=""><td>µg∕Kg-dry</td><td>4/8/2008 B:27:00 PM</td></rl<>	µg∕Kg-dry	4/8/2008 B:27:00 PM
Diberiz(a,h)anthracene	84.2	<rl d<="" td=""><td>μg/Kg-dry</td><td>4/9/2008 8:14:00 AM</td><td>Dibenz(a,h)anthracene</td><td>79.1</td><td>≪RL D</td><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl>	μg/Kg-dry	4/9/2008 8:14:00 AM	Dibenz(a,h)anthracene	79.1	≪RL D	µg/Kg-dry	4/8/2008 8:27:00 PM
Fluorenthene	64.2	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:14:00 AM</td><td>Fluoranthene</td><td>79.1</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2006 6:27:00 PM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2008 8:14:00 AM	Fluoranthene	79.1	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2006 6:27:00 PM</td></rl<>	µg/Kg-dry	4/8/2006 6:27:00 PM
Fluorene	84.2	≪RL	µg/Kg-dry	4/9/2006 B:14:00 AM	Fluorene	79.1	< ₹ L	µg/Kg-dry	4/8/2008 8:27:00 PM
Indeno(1,2,3-cd)pyrene	84.2	<rl d<="" td=""><td>μg/Kg-dry</td><td>4/9/2008 8:14:00 AM</td><td>Indeno(1,2,3-cd)pyrene</td><td>79.1</td><td><rl d<="" td=""><td>µg/Кg-dгу</td><td>4/8/2008 8:27:00 PM</td></rl></td></rl>	μg/Kg-dry	4/9/2008 8:14:00 AM	Indeno(1,2,3-cd)pyrene	79.1	<rl d<="" td=""><td>µg/Кg-dгу</td><td>4/8/2008 8:27:00 PM</td></rl>	µg/Кg-dгу	4/8/2008 8:27:00 PM
Naphthalene	84.2	<rl< td=""><td>μg/Κg-dry</td><td>4/9/2008 B:14:00 AM</td><td>Naphthalene</td><td>79.1</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<></td></rl<>	μ g/ Κg-dry	4/9/2008 B:14:00 AM	Naphthalene	79.1	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 8:27:00 PM
Phenanthrene	84.2	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2006 8:14:00 AM</td><td>Phenanthrene</td><td>79.1</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:27:00 PM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2006 8:14:00 AM	Phenanthrene	79.1	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 6:27:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 6:27:00 PM
Pyrene	84.2	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:14:00 AM</td><td>Pyrene</td><td>79.1</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2008 8:14:00 AM	Pyrene	79.1	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 8:27:00 PM</td></rl<>	µg/Kg-dry	4/8/2008 8:27:00 PM
VOLATILE ORGANIC COMPOUNDS BY GC/MS, 87	TE 2.5	SW8260B <rl< td=""><td>(\$W5035/8; µg/Kg-dry</td><td>260B) Analyst GV 4/8/2008</td><td>VOLATILE ORGANIC COMPOUNDS BY GC/MS, RTE Methyl terl-butyl ether</td><td>2.3</td><td>5W82G0B <rl< td=""><td>(SW5035/82 µg/Kg-dry</td><td>260B) Analyst: GV 4/8/2008</td></rl<></td></rl<>	(\$W5035/8; µg/Kg-dry	260B) Analyst GV 4/8/2008	VOLATILE ORGANIC COMPOUNDS BY GC/MS, RTE Methyl terl-butyl ether	2.3	5W82G0B <rl< td=""><td>(SW5035/82 µg/Kg-dry</td><td>260B) Analyst: GV 4/8/2008</td></rl<>	(SW5035/82 µg/Kg-dry	260B) Analyst: GV 4/8/2008
Methyl tert-butyl ether	2.5	<rl< td=""><td></td><td>4/8/2008</td><td>Benzene</td><td>2.3</td><td><₹₹</td><td>μg/Kg-dry</td><td>4/8/2008</td></rl<>		4/8/2008	Benzene	2.3	< ₹ ₹	μg/Kg-dry	4/8/2008
Benzene	2.5 2.5	7.6	ug/Kg-dry ug/Kg-dry	4/8/2008	Toluene	2.3	<rl< td=""><td>hat vary</td><td>4/8/2008</td></rl<>	hat vary	4/8/2008
Toluene	2.5	4.0		4/8/2008	Ethylbenzene	2.3	<rl< td=""><td>pg/Kg-dry</td><td>4/8/2008</td></rl<>	pg/Kg-dry	4/8/2008
Ethylbenzena Xvienes, Total	2.5 5.2	4.0 15.2	μ g/Kg-dry μg/Kg-dry	4/6/2008 4/6/2008	Xylenes, Total	2.3 5.8	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008</td></rl<>	µg/Kg-dry	4/8/2008
Ayrenes, Total	92	10.2	PB-US-21 A	40200	Ayanas, Total	5.5	44	PB 4 - 3	402000
PERCENT MOISTURE		D2974/SM2540G		Analyst: ND	PERCENT MOISTURE		D2974/SM2540G		Analyst: ND
Percent Moisture	0.5	20.4	%	4/7/2008	Percent Moisture	0.5	15.3	%	4/7/2008
Percent Solids	0.5	79.6	%	4/7/2008	Percent Solids	0.5	84.7	%	4/7/2008

TMI Analytical Services, LLC

Laboratory Results Date: 16-Apr-08

TMI Analytical Services, LLC

Date: 16-Apr-08 Laboratory Results

CLIENT:

Lab Order: Lab ID:

Midwest Environmental Services

0804042

0804042-009

Client Sample ID: XF3

Collection Date: 4/3/2008 1:30:00 PM

Lab ID:

Lab Order: 0804042

CLIENT:

0804042-010

Freedom Oil Company, 08-24, Champaign

Midwest Environmental Services

Client Sample ID: XW1

Collection Date:

4/3/2008 10:20:00 AM

Project:	Freedom Oil Company, 98-24, Champa	ign	Matrix:	SOLID		Project: Freedom Oil Company,	, 08-24, Champaign	Matrix:	SOLID	
Analyses		RL,	Result Q	osl Units	Date Analyzed	Analyses	RL	Result Qua	Units	Date Analyzed
PNAS BY EPA (80.6	SW8270C ≪L	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2008-7:31:00 AM	PNAS BY EPA 8270C Acenaphthene	85.5	\$W8279¢ <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst; KM 4/9/2008 6:49:00 AM</td></rl<>	(SW3 550) µg/Kg-dry	Analyst; KM 4/9/2008 6:49:00 AM
Acenaphthyle	ene	80.6	≪L	µg/Kg-dry	4/9/2008 7:31:00 AM	Acenaphibylene	85,5	<rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	ug/Kg-dry	4/9/2008 6:49:00 AM
Anthracene		241	≪L	µg/Kg-dry	4/9/2008 7:31:00 AM	Anthracene	255	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 6:49:00 AM
Benz(a)enthr	racene	241	≪L	μg/Kg-dry	4/9/2008 7:31:00 AM	Benz(a)anthyacene	255	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 6:49:00 AM
Benzo(a)pyra	e ne	80.6	₽L	µg/Kg-dry	4/9/2008 7:31;00 AM	Benzo(a)pyrene	85.5	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	μg/Kg-dry	4/9/2008 6:49:00 AM
Benzo(b)fluo	ranthene	401	≪RL	µg/Kg-dry	4/9/2008 7:31;00 AM	Bertzo(b)fluoranthene	425	<rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	ug/Kg-dry	4/9/2008 6:49:00 AM
Benzo(g,h,i)s	perylene	241	∢RL	µg/Kg-dry	4/9/2008 7:31:00 AM	Benzo(g,h,i)perylene	255	<rt_< td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rt_<>	µg/Kg-dry	4/9/2008 6:49:00 AM
Bertzo(k)fluo	oranthene	241	≪RL	µg/Kg-dry	4/9/2008 7:31:00 AM	Benzo(k)fluoranthene	25 5	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 6:49:00 AM
Chrysene		80.6	≪RL	µg/Kg-dry	4/9/2008 7:31:00 AM	Chrysene	85,5	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 6:49:00 AM
Diberz(a,h)a	enthracene	20,08	≪RL D	µg/Kg-dry	4/9/2008 7:31:00 AM	Dibenz(a,h)anthracene	85.5	<rl 0<="" td=""><td>us/Kg-dry</td><td>4/9/2008 5:49:00 AM</td></rl>	us/Kg-dry	4/9/2008 5:49:00 AM
Fluoranthene	ē .	80.6	4RL	μg/Kg-dry	4/9/2008 7:31:00 AM	Fluoranthene	85,5	≪RL	μα/Κα-dry	4/9/2008 6:49:00 AM
Fluorene		60,6	⊲RL	μg/Kg-dry	4/9/2008 7:31:00 AM	Fluorene	85.5	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2006 6:49:00 AM</td></rl<>	µg/Kg-dry	4/9/2006 6:49:00 AM
Indeno(1,2,3	3-cd)pyrene	60.6	≪RL D	µg/Kg-dry	4/9/2008 7;31:00 AM	Indeno(1,2,3-cd)pyrene	85,5	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl>	µg/Kg-dry	4/9/2008 6:49:00 AM
Naphthalene	!	80.6	≪RL	μ ο/Kg-d ry	4/9/2008 7:31:00 AM	Naphihalene	85.5	<rl< td=""><td>pg/Kg-dry</td><td>4/9/2008 6:49:00 AM</td></rl<>	pg/Kg-dry	4/9/2008 6:49:00 AM
Phonanthren	ne	80,6	48↓	μg/Kg-dry	4/9/2008 7:31:00 AM	Phenanthrene	85.5	₹L	µg/Kg-dry	4/9/2008 6:49:00 AM
Pyrene		80.6	≪t	ug/Kg-dry	4/9/2008 7:31:00 AM	Pyrene	85.5	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 6;49:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 6;49:00 AM
VOLATILE ORG	GANIC COMPOUNDS BY GC/MS, BTE	2.4	SW8260B	(SW5035/8 µ р/Ко-dr y	260B) Analyst: GV 4/8/2008	VOLATILE ORGANIC COMPOUNDS BY Methyl test-bulyl ether	GC/MS, BTE	SW8260B <rl< td=""><td>(SW5035/82</td><td>260B) Analyst: GV 4/9/2008</td></rl<>	(SW5035/82	260B) Analyst: GV 4/9/2008
Banzene	,.	2.4	<rl< td=""><td>μg/Kg-dry</td><td>4/8/2008</td><td>Benzene</td><td>11.7</td><td>24.7</td><td>μο/Κο-dry</td><td>4/9/2008</td></rl<>	μ g/Kg-dry	4/8/2008	Benzene	11.7	24.7	μ ο/Κο-dry	4/9/2008
Toluene		2.4	<rt.< td=""><td>μg/Kg-dry</td><td>4/8/2008</td><td>Toluene</td><td>11.7</td><td>283</td><td>μο/Kg-dry</td><td>4/9/2008</td></rt.<>	μg/Kg-dry	4/8/2008	Toluene	11.7	283	μ ο/Kg-dry	4/9/2008
Ethylbenzen	ıa	2.4	<rl< td=""><td>μg/Kg-dry</td><td>4/8/2008</td><td>Ethybenzene</td><td>11.7</td><td>99.1</td><td>μα/Kα-dry</td><td>4/9/2008</td></rl<>	μg/Kg-dry	4/8/2008	Ethybenzene	11.7	99.1	μα/Kα-dry	4/9/2008
Xylenes, Tot		6.0	≪RL	μ g/Kg-d ry	4/6/2008	Xylenes, Total	29.3	652	µg/Kg-dry	4/9/2008
PERCENT MO	STURE		D2974/SM2540G		Analyst ND	PERCENT MOISTURE	c)2974/ SM 254pG		Analyst: ND
Percent Mois	sture	0.5	16.9	%	4/7/2008	Percent Malsture	0.5	21.5	%	4/7/2008
Percent Soli	ida	0.5	B3.1	%	4/7/2008	Percent Solids	0.5	78.4	*	4/7/2008

TMI Analyti	ical Services, LLC	L	aboratory Results	Date: 16-Ap	r-08 	TMI Anal	lytical Services, LLC	1	Laboratory Results	Date: 16-Ap	
Lab Order: Lab ID:	Midwest Environmental Service 0804042 0804042-011 Freedom Oil Company, 08-24, Champa		Client Sam Collection Matrix:	-	 08 10:30:00 AM	CLIENT: Lab Order: Lab ID: Project:	Midwest Environmental Service 0804042 0804042-012 Freedon Oil Company, 08-24, Chang		Cilent Samp Collection D Matrix:		08 10:40:00 AM
Analyses		RL	Result Qua	al Units	Date Analyzed	Analyses		RL	Result Qual	Units	Date Analyzed
PNAS BY EPA 8270 Acensphilhene	c	80,0	SW8276C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/8/2008 9:10:00 PM</td><td>PNAS BY EPA 8 Acensphthen</td><td>·</td><td>78.0</td><td>SW8270C</td><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/9/2006 8:57:00 AM</td></rl<>	(SW3550) µg/Kg-dry	Analyst: KM 4/8/2008 9:10:00 PM	PNAS BY EPA 8 Acensphthen	· 	78.0	SW8270C	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2006 8:57:00 AM
Acenaphthylene		80,0	<rl< td=""><td>µg/Kg-dry</td><td>4/B/2008 9:10:00 PM</td><td>Acensphihyle</td><td>ene</td><td>78.0</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/B/2008 9:10:00 PM	Acensphihyle	ene	78.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 8:57:00 AM
Anthracene		239	<rl< td=""><td>µg/Кд-₫гу</td><td>4/8/2008 9:10:00 PM</td><td>Anthracene</td><td></td><td>233</td><td><rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Кд- ₫гу	4/8/2008 9:10:00 PM	Anthracene		233	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	μg/Kg-dry	4/9/2008 8:57:00 AM
Benz(a)anthracer	ne.	239	<rl< td=""><td>µg/Kg-d≀y</td><td>4/8/2008 9:10:00 PM</td><td>Benz(a)anthra</td><td>acene</td><td>233</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-d≀y	4/8/2008 9:10:00 PM	Benz(a)anthra	acene	233	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 8:57:00 AM
Вепго(а)ругеле		80,0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Benzo(a)pyre</td><td>ne</td><td>78.0</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Benzo(a)pyre	ne	78.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 8:57:00 AM
Benzo(b)fluoranth	nene	396	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Benzo(b)fluor</td><td>enerthis</td><td>388</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Benzo(b)fluor	enerthis	388	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 8:57:00 AM
Benzo(g,h,i)peryl	ene	239	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Benzo(g.h,i)p</td><td>erylene</td><td>233</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 B:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Benzo(g.h,i)p	erylene	233	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 B:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 B:57:00 AM
Benzo(k)fluoranti:	ene	239	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Benzo(k)fluor</td><td>anthene</td><td>233</td><td><rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Benzo(k)fluor	anthene	233	<rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	ug/Kg-dry	4/9/2008 8:57:00 AM
Chrysarie		80.0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Chrysene</td><td></td><td>70.0</td><td><rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Chrysene		70.0	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	μ g/Kg-d ry	4/9/2008 8:57:00 AM
Dibenz(a,h)enthra	gicene	80.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Dibenz(a,h)ar</td><td>nthracene</td><td>78.0</td><td><rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57;00 AM</td></rl></td></rl>	µg/Kg-dry	4/8/2008 9:10:00 PM	Dibenz(a,h)ar	nthracene	78.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57;00 AM</td></rl>	µg/Kg-dry	4/9/2008 8:57;00 AM
Fluoranthene		0.08	<rl< td=""><td>ра/Ка-ату</td><td>4/8/2008 9:10:00 PM</td><td>Fluoranthene</td><td>•</td><td>78.0</td><td><rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	ра/Ка-а ту	4/8/2008 9:10:00 PM	Fluoranthene	•	78.0	<rl< td=""><td>μg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	μ g/Kg-dr y	4/9/2008 8:57:00 AM
Fluorene		80.0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Fluorene</td><td></td><td>78.0</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Fluorene		78.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 8:57:00 AM
tndeno(1,2,3-cd)p	pyrene	80.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Indeno(1,2,3-</td><td>ed)pyrene</td><td>78.0</td><td><rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl></td></rl>	µg/Kg-dry	4/8/2008 9:10:00 PM	Indeno(1,2,3-	ed)pyrene	78.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl>	µg/Kg-dry	4/9/2008 8:57:00 AM
Naphthalene		80,0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Naphthalene</td><td></td><td>78.0</td><td><r1.< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></r1.<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Naphthalene		78.0	<r1.< td=""><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></r1.<>	µg/Kg-dry	4/9/2008 8:57:00 AM
Phenanthrene		80.0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Phenanthrene</td><td></td><td>78.0</td><td><rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Phenanthrene		78.0	<rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	ug/Kg-dry	4/9/2008 8:57:00 AM
Pyrene		80.0	<rl< td=""><td>µg/Kg-dry</td><td>4/8/2008 9:10:00 PM</td><td>Pyrene</td><td></td><td>78.0</td><td>≪RL</td><td>µg/Kg-dry</td><td>4/9/2008 8:57:00 AM</td></rl<>	µg/Kg-dry	4/8/2008 9:10:00 PM	Pyrene		78.0	≪RL	µg/Kg-dry	4/9/2008 8:57:00 AM
VOLATILE ORGANI Methyl test-butyl o	IC COMPOUNDS BY GC/MS, BTE stiver	2.4	SW8260B <rl< td=""><td>(SW5035/8 µg/Kg-dry</td><td>266B) Analyst: GV 4/9/2008</td><td>VOLATILE ORG Melhyl terl-bu</td><td>ANIC COMPOUNDS BY GC/MS, BTE</td><td>2.3</td><td>SW8260B <rl< td=""><td>{SW5035/8; µg/Кg-фу</td><td>260B) Analyst: GV 4/9/2006</td></rl<></td></rl<>	(SW5035/8 µg/Kg-dry	266B) Analyst: GV 4/9/2008	VOLATILE ORG Melhyl terl-bu	ANIC COMPOUNDS BY GC/MS, BTE	2.3	SW8260B <rl< td=""><td>{SW5035/8; µg/Кg-фу</td><td>260B) Analyst: GV 4/9/2006</td></rl<>	{SW5035/8; µg/Кg-фу	260B) Analyst: GV 4/9/2006
Benzene		2.4	67.7	µg/Kg-dry	4/9/2008	Benzene		2.3	⋖RL	µg/Kg-dry	4/9/2008
Toluene		2.4	265 E	µg/Kg-dry	4/9/2008	Тоіцеле		2.3	23.1	µg/Kg-dry	4/9/2008
Ethylbenzene		2.4	29 <i>.</i> 2	µg/Kg-dry	4/9/2008	Ethylbenzene	•	2.3	9.5	µg/Kg-dry	4/9/2008
Xylenes, Total		6.0	139	µg/Kg-dry	4/9/2006	Xylenes, Tota	4	5.8	48.7	ug/Kg-dry	4/9/2008
PERCENT MOISTU Percent Moisture	· ·=	0.5	D2974/SM2540G 16.3	%	Analyst: ND 4/7/2008	PERCENT MOIS		0.5	D2974/SM2540G 14.1	%	Analyst ND
Percent Solids		0.5	83,7	%	4/7/2008	Percent Solid		0.5	85.9	*	4/7/2006

3

21769806

0/

	_
	_
	Z
	_
	N
	_
	\sim
	Ф.
1	
ì	9
١	0
ì	0
ı	
Ĺ	0
١	Ü
Ļ	
1	Q)
)	
ı	
1	
ı	
1	

									·
**LIENT: Midwest Environmental Service	S	C#	-1. TT: 3737.4		CLIENT: Midwest Environmental S	ervices			
ab Order: 0804042		•	ole ID: XW4		Lab Order: 0804042		Client San	-	
ab 1D: 0804042-013		Collection [8 10:50:00 AM	Lab ID: 0804042-014		Collection		MA 00:00:11 R
roject: Freedom Oil Company, 08-24, Champa		Matrix:	SOLID		: Project: Freedom Oil Company, 98-24, 1	Jumpeign	Matrix:	SOLID	<i>)</i>
oalyses	RL	Result Qual	Units	Date Analyzed	Analyses	RL	Result Qu	al Units	Date Analyzed
nas by Epa 8270C		SW8270C	(SW3550)	Analyst: KM	PNAS BY EPA 8270C		SW8270C	(SW3550)	Analyst: Ki
Acenaphthene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Acenaphthene</td><td>78.6</td><td>₹L</td><td>ug/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Acenaphthene	78.6	₹L	ug/Kg-dry	4/9/2008 2:33:00 AM
Acenaphthylene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2006 9:39:00 AM</td><td>Acenaphthylene</td><td>78.6</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2006 9:39:00 AM	Acenaphthylene	78.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 2:33:00 AM
Anthracene	230	<rl< td=""><td>hayka-quy</td><td>4/9/2006 9:39:00 AM</td><td>Anthracene</td><td>235</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	hayka-quy	4/9/2006 9:39:00 AM	Anthracene	235	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 2:33:00 AM
Benz(e)anthracene	230	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Berz(a)anthracens</td><td>235</td><td><rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Berz(a)anthracens	235	<rl< td=""><td>ug/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	ug/Kg-dry	4/9/2008 2:33:00 AM
Benzo(a)pyrene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9;39:00 AM</td><td>Benzo(a)pyrene</td><td>78,6</td><td><rl< td=""><td>µg∕Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2008 9;39:00 AM	Benzo(a)pyrene	78,6	<rl< td=""><td>µg∕Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg∕Kg-dry	4/9/2008 2:33:00 AM
Benzo(b)fluoranthene	383	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Benzo(b)fluoranthene</td><td>391</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2;33:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Benzo(b)fluoranthene	391	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2;33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 2;33:00 AM
Benzo(g,h,i)perylene	230	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Benzo(g.h.i)perylana</td><td>235</td><td><ril td="" ·<=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AN</td></ril></td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Benzo(g.h.i)perylana	235	<ril td="" ·<=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AN</td></ril>	µg/Kg-dry	4/9/2008 2:33:00 AN
Benzo(k)fluoranthene	230	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Benzo(k)fluoranthene</td><td>235</td><td><r1< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></r1<></td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Benzo(k)fluoranthene	235	<r1< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></r1<>	µg/Kg-dry	4/9/2008 2:33:00 AM
Chrysene	77.0	<rl< td=""><td>pg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Chrysene</td><td>78.6</td><td><r1.< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></r1.<></td></rl<>	pg/Kg-dry	4/9/2008 9:39:00 AM	Chrysene	78.6	<r1.< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></r1.<>	µg/Kg-dry	4/9/2008 2:33:00 AM
Otheriz(a,h)anthracene	77.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Dibenz(a,h)anthracene</td><td>78.6</td><td><rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl></td></rl>	µg/Kg-dry	4/9/2008 9:39:00 AM	Dibenz(a,h)anthracene	78.6	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl>	µg/Kg-dry	4/9/2008 2:33:00 AM
Fluoranthene	77.0	<rl< td=""><td>рд/Кұ-фү</td><td>4/9/2008 9:39:00 AM</td><td>Fluoranthene</td><td>78.6</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	рд/Кұ-фү	4/9/2008 9:39:00 AM	Fluoranthene	7 8 .6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 2:33:00 AM
Fluorene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Fluorena</td><td>78.6</td><td>≪L</td><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Fluorena	78.6	≪L	µg/Kg-dry	4/9/2008 2:33:00 AM
Indeno(1,2,3-cd)pytene	77.0	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Indeno(1,2,3-cd)pyrene</td><td>78.6</td><td>4RL D</td><td>ug/kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl>	µg/Kg-dry	4/9/2008 9:39:00 AM	Indeno(1,2,3-cd)pyrene	78.6	4RL D	ug/kg-dry	4/9/2008 2:33:00 AM
Naphthalene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9;39:00 AM</td><td>Naphthalene</td><td>78.6</td><td>₽L</td><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 9;39:00 AM	Naphthalene	78.6	₽L	µg/Kg-dry	4/9/2008 2:33:00 AM
Phenanthrene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 9:39:00 AM</td><td>Phenanthrane</td><td>78.6</td><td>4RL</td><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 9:39:00 AM	Phenanthrane	78.6	4RL	µg/Kg-dry	4/9/2008 2:33:00 AM
Pyriene	77.0	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2006 9:39:00 AM</td><td>Ругеле</td><td>78.6</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<></td></rl<>	µg/Kg-dry	4/9/2006 9:39:00 AM	Ругеле	78.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 2:33:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 2:33:00 AM
OLATILE ORGANIC COMPOUNDS BY GC/MS, BITE		SW8250B	(SW5035/82		VOLATILE ORGANIC COMPOUNDS BY GCMS,		SW8260B	(SW5035/82	260B) Analyst: G\
Methyl tert-butyl ether	2.2	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008</td><td>Methyl teri-butyl ether</td><td>2.3</td><td><₹1.</td><td>µg/Kg-d≀y</td><td>4/9/2008</td></rl<>	µg/Kg-dry	4/9/2008	Methyl teri-butyl ether	2.3	<₹ 1 .	µg/Kg-d≀y	4/9/2008
Senzene	2.2	<ril< td=""><td>µg/Kg-dry</td><td>4/9/2008</td><td>Benzene</td><td>2.3</td><td><₹L</td><td>µg/Kg-dry</td><td>4/9/2008</td></ril<>	µg/Kg-dry	4/9/2008	Benzene	2.3	<₹L	µg/Kg-dry	4/9/2008
Toluene	2.2	<rl< td=""><td>µg/Кg-dry</td><td>4/9/2008</td><td>Toluene</td><td>2.3</td><td>≪RL</td><td>ug/Kg-dry</td><td>4/9/2008</td></rl<>	µg/Кg-dry	4/9/2008	Toluene	2.3	≪RL	ug/Kg-dry	4/9/2008
Ethylbenzene	2.2	2.3	μg/Kg-dry	4/9/2008	Ethylbenzene	2.3	< ₹ L	µg/Kg-dry	4/9/2008
Xylones, Total	5.6	<rt.< td=""><td>µg/Kg-d₁y</td><td>4/9/2006</td><td>Xylenes, Total</td><td>5.8</td><td><rl< td=""><td>µg/Kg-dry</td><td>4/9/2008</td></rl<></td></rt.<>	µg/Kg-d₁y	4/9/2006	Xylenes, Total	5.8	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008</td></rl<>	µg/Kg-dry	4/9/2008
ERCENT MOISTURE		D2974/SM2540G		Analyst: ND	PERCENT MOISTURE		D2974/SM2540G		Analyst: N
Percent Moisture	0.5	13.0	%	4/7/2008	Percent Moisture	0.5	14.8	%	4/7/2008

TMI Analytical Services, LLC	Lai	oratory Results	Date: 16-Apr	~-08	TMI Analytical Services, LLC	La	boratory Results	Date: 16-Ap	
CLIENT: Midwest Environmental Service Lab Order: 0804042 Lab ID: 0804042-015 Project: Freedom Oil Company, 08-24, Champ		Client Samp Collection E Matrix:	ole ID: XW6 Pate: 4/3/200 SOLID	8 1:40:00 PM	CLIENT: Midwest Environmental Ser Lab Order: 0804042 Lab ID: 0804042-016 Project: Freedom Oil Company, 08-24, Ch	- -	Client Samp Collection D Matrix:	sle IB: XW7 late: 4/3/200 SOLID	08 1:50:00 PM
Analyses	RL	Result Qual	Units	Date Analyzed	Analyses	RL	Result Qual	Units	Date Analyzed
PNAS BY EPA 8270C Acenaphthene	81.6	\$W8270C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/9/2006 3:15:00 AM</td><td>PNAS BY EPA 8270C Acenephthene</td><td>78.5</td><td>SW8270C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/9/2008 3:58:00 AM</td></rl<></td></rl<>	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2006 3:15:00 AM	PNAS BY EPA 8270C Acenephthene	78.5	SW8270C <rl< td=""><td>(SW3550) µg/Kg-dry</td><td>Analyst: KM 4/9/2008 3:58:00 AM</td></rl<>	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2008 3:58:00 AM
Acenaphthylene	81,6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Acenaphthylene</td><td>78.5</td><td>≪RL</td><td>ug/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:15:00 AM	Acenaphthylene	78.5	≪RL	ug/Kg-dry	4/9/2008 3:58:00 AM
Anthracene	244	49€	µg/Kg-dry	4/9/2008 3:15:00 AM	Anthracene	234	⊲RL	µg/Kg-dry	4/9/2008 3:58:00 AM
Benz(a)anthracene	244	⊲RL	µg/Kg-dry	4/9/2008 3:15:00 AM	Benz(a)anthracene	234	≪RL	µg/Kg-dry	4/9/2008 3:58:00 AM
Berizo(a)pyrene	81.6	481.	µg/Kg-dry	4/9/2008 3:15:00 AM	Benzo(a)pyrene	78.5	≪L	µg/Kg-dry	4/9/2008 3;58:00 AM
Bertzo(b)fluoranthere	406	⊲RL	µg/Kg-dry	4/9/2008 3:15:00 AM	Benzo(b)fluoranthene	390	<₹L	µg/Kg-dry	4/9/2008 3:58:00 AM
Benzo(g,h,i)perylene	244	≺RL	µg/Kg-dry	4/9/2008 3:15:00 AM	Benzo(g,h,i)perylane	234	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:58:00 AM
Benzo(k)fluoranthene	244	4₹L	μ ο /Κο-dιγ	4/9/2008 3:15:00 AM	Benzo(k)fluoranthene	234	⊲RL	µg/Kg-dry	4/9/2008 3:58:00 AM
Chrysene	61.6	<₽L	µg/Kg-d≀y	4/9/2008 3:15:00 AM	Chrysene	78.5	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:58:00 AM
Dibenz(a,h)anthracene	81.6	<rl d<="" td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Dibenz(a,h)anthracene</td><td>78.5</td><td><rl d<="" td=""><td>µg⁄Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl></td></rl>	µg/Kg-dry	4/9/2008 3:15:00 AM	Dibenz(a,h)anthracene	78.5	<rl d<="" td=""><td>µg⁄Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl>	µg⁄Kg-dry	4/9/2008 3:58:00 AM
Fluoranthene	81,6	≺RL	µg/Kg-dry	4/9/2008 3:15:00 AM	Fluoranthene	78,5	<r1_< td=""><td>рд∕Кд-dгу</td><td>4/9/2008 3:58:00 AM</td></r1_<>	р д∕Кд-d гу	4/9/2008 3:58:00 AM
Fluorene	81.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Fluorene</td><td>78.5</td><td><rt.< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rt.<></td></rl<>	µg/Kg-dry	4/9/2008 3:15:00 AM	Fluorene	78.5	<rt.< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rt.<>	µg/Kg-dry	4/9/2008 3:58:00 AM
Indeno(1,2,3-cd)pyrene	B1.5	≪RL D	µg/Kg-dry	4/9/2008 3:15:00 AM	Indeno(1,2,3-cd)pyrene	78.5	<rl d<="" td=""><td>µg∕Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl>	µ g ∕Kg-dry	4/9/2008 3:58:00 AM
Naphthalene	81.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Nachthalene</td><td>78.5</td><td>⊲₹t.</td><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:15:00 AM	Nachthalene	78.5	⊲ ₹t.	µg/Kg-dry	4/9/2008 3:58:00 AM
Phenanthrene	B1.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Phenanthrene</td><td>78.5</td><td>⋖₹L</td><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:15:00 AM	Phenanthrene	78.5	⋖₹L	µg/Kg-dry	4/9/2008 3:58:00 AM
Pyrene	B1.6	<rl< td=""><td>µg/Kg-dry</td><td>4/9/2008 3:15:00 AM</td><td>Pyrene</td><td>78.5</td><td>∢RL</td><td>µg/Kg-dry</td><td>4/9/2008 3:58:00 AM</td></rl<>	µg/Kg-dry	4/9/2008 3:15:00 AM	Pyrene	78.5	∢RL	µg/Kg-dry	4/9/2008 3:58:00 AM
VOLATILE ORGANIC COMPOUNDS BY GC/MS, BTE Methyl teni-butyl ether	2.4	SW8260B <rl< td=""><td>(\$W5035/8; pg/Kg-dry</td><td>180B) Analyst: GV 4/15/2008</td><td>VOLATILE ORGANIC COMPOUNDS BY GC/MS, B Methyl left-butyl either</td><td>TE 2.3</td><td>\$₩8260B ≪L</td><td>(SW5035/82 µg/Kg-dry</td><td>(60B) Analyst: GV 4/9/2006</td></rl<>	(\$W5035/8; pg/Kg-dry	180B) Analyst: GV 4/15/2008	VOLATILE ORGANIC COMPOUNDS BY GC/MS, B Methyl left-butyl either	TE 2.3	\$₩8260B ≪L	(SW5035/82 µg/Kg-dry	(60B) Analyst: GV 4/9/2006
Bertzene	2,4	<rl< td=""><td>ug/Kg-dry</td><td>4/15/2008</td><td>Benzene</td><td>2.3</td><td>5.4</td><td>µg/Kg-dry</td><td>4/9/2008</td></rl<>	ug/Kg-dry	4/15/2008	Benzene	2.3	5.4	µg/Kg-dry	4/9/2008
Toluene	2.4	<rl< td=""><td>µg/Kg-dry</td><td>4/15/2008</td><td>Toluene</td><td>2.3</td><td>2,4</td><td>µg/Kg-dry</td><td>4/9/2008</td></rl<>	µg/Kg-dry	4/15/2008	Toluene	2.3	2,4	µg/Kg-dry	4/9/2008
Ethylbenzene	2.4	3.0 M	pg/Kg-dry	4/15/2008	: Ethylbenzene	2.3	9,1	µg/Kg-dry	4/9/2008
Xylenes, Total	8.1	6.2 M	µg/Kg-dry	4/15/2008	Xylenes, Total	5,6	10,6	µg/Kg-dry	4/9/2008
PERCENT MOISTURE Percent Moisture		D2974/SM2540G	œ	Analyst: ND	PERCENT MOISTURE		D2974/SM2540G	b	Analyst: ND
	0.5	17.9	%	4/7/2008	Percent Moisture	0.5	14.7	%	4/7/2008
Percent Solids	0.5	82.1	%	4/7/2008	Percent Salids	0.5	85.3	%	4/7/2008

TMIT	Analytical	Carriege	TIC
1 1711	AUGUVULAL	MELAIFES.	BILLIA.

Laboratory Results

Date: 16-Apr-08

Midwest Environmental Services

Lab Order: Lab ID:

0804042

Client Sample ID: XW8

0804042-017

Collection Date: 4/3/2008 2:00:00 PM

Project: Freedom Oil Company, 08-24, Cham	Freedom Oil Company, 08-24, Champaign			SOLID		
Analyses	RL	Result	Qual	Units	Date Analyzed	_
PNAS BY EPA 8270C Acenaphthene	78.0	SW8270C	_	(SW3550) µg/Kg-dry	Analyst: KM 4/9/2008 4:41:00 AM	_
Acenaphinylene	78.0	4RL		pg/Kg-dry	4/9/2008 4:41:00 AM	
Anthracene	233	481		ug/Kg-dry	4/9/2008 4:41:00 AM	
Benz(a)anihracene	233	<81 -4α		μα/Kα-dry	4/9/2008 4:41:00 AM	
Benzo(a)pyrene	233 78.0	4RL			4/9/2008 4:41:00 AM	
	388	-AC. -481.		µg/Kg-dry		
Benzo(b)fluoranthene		474. 474.		µg/Kg-dry	4/9/2008 4:41:00 AM	
Benzo(g,h,l)perylene	233	41€L		µg/Kg-dry	4/9/2008 4:41:00 AM	
Benzo(k)fluoranthene	233			µg/Kg-dry	4/9/2008 4:41:00 AM	
Chrysene	78.0	≪RL	_	µg/Kg-dry	4/9/2008 4:41:00 AM	
Dibenz(e,h)anthracene	78.0	≪Rt.	D	µg/Kg-dry	4/9/2008 4:41:00 AM	
Fluoranthene	78.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008 4:41:00 AM</td><td></td></rl<>		µg/Kg-dry	4/9/2008 4:41:00 AM	
Fluorene	78.0	<rl< td=""><td></td><td>µg/Kg-dry</td><td>4/9/2008 4:41:00 AM</td><td></td></rl<>		µg/Kg-dry	4/9/2008 4:41:00 AM	
Indeno(1,2,3-cd)pyrene	78.0	4RL	D	µg/Kg-dry	4/9/2008 4:41:00 AM	
Naphthalene	78.0	626		µg/Kg-dry	4/9/2008 4:41:00 AM	
Phenanthrene	78.0	107		µg/Kg-dry	4/9/2008 4:41:00 AM	
Pyrene	78.0	481.		µg/Kg-dry	4/9/2008 4:41:00 AM	
VOLATILE ORGANIC COMPOUNDS BY GC/MS, BTI	E	SW8260B		(SW5035/82	260B) Analyst: GV	
Methyl tert-butyl ether	2.3	⊲રા∟		havka-qu	4/15/2008	
Benzene	2.3	5,1		µg/Kg-dry	4/15/2008	
Toluene	2.3	≪ ₹1.		µg/Kg-dry	4/15/2008	
Ethylbenzene	9.9	229		μg/Kg-dry	4/9/2008	
Xylenes, Total	24.7	85.2		µg/Kg-dry	4/9/2008	
PERCENT MOISTURE		D2974/SM2540	G		Analyst ND	
Percent Moisture	0.5	14.1		%	4/7/2008	
Percent Solids	0.5	85.9		%	4/7/2008	

APPENDIX B

MECRS SOIL SAMPLING PROTOCOL

SOIL SAMPLING PROTOCOL

TO BE USED WHEN SAMPLING L.U.S.T. SITE EXCAVATIONS

- 1. Sampling Methodology & Decontamination Procedures
 - A. All sampling equipment to be used will be decontaminated using an alconox wash and distilled water rinse prior to and between samples.
 - B. Soil samples will be collected from excavation extents using a stainless steel trowel. The trowel will be inserted into the soil several inches so as to collect an undisturbed sample. The sample will be immediately placed into a new, airtight, glass jar with a teflon lined lid*.

Representative grab samples will be collected along excavation sidewalls at a minimum of one sample per twenty feet of sidewall. When sidewall lengths exceed twenty feet, additional sidewall representative samples will be collected. Sidewall samples will be collected from an area parallel to the lower one-third of the tank.

Representative sampling of the excavation floor will require a minimum of two grab samples to be collected in areas representing the tank invert ends. If excavation floor extents exceed 400 square feet, additional representative samples will be collected at a minimum of one sample per additional 400 square feet.

If a release has occurred along product distribution lines, representative grab samples will be collected from below areas where distribution lines were previously located. These samples will be collected at twenty foot intervals.

- 2. Sample Storage and Transport
 - A. Samples will be immediately placed on ice in an insulated cooler and chilled to 4 Celsius. Samples will be transported on ice to an IEPA certified laboratory as soon as possible.
 - B. A chain of custody record will be kept for all laboratory analyzed samples.

^{*}Encore sampling system will be substituted for glass jars when required.

APPENDIX C

OSFM Removal Notification and Removal Permit

21 08 10:54a

Illinois Oil Marketing 3093471892 Electronic Filing: Received, Člerk's Office 1/6/2021

OFFICE OF THE ILLINOIS STATE FIRE MARSHAL

Division of Technical Services 1035 Stevenson Drive Springfield, Illinois 62703-4259 (217)524-7605

FOR OFFICE USE ONLY Facility # 4-016556 Permit # 00348-2008REM Request Rec'd 03/12/2008 Amended Date Approval Date 3/12/2008 DS Permit Expires 9/12/2008

Permit for REMOVAL of Underground Storage Tank(s) and Piping for Petroleum and Hazardous Substances.

Permission to remove underground storage tank(s) or piping is hereby granted. Such removal shall not commence until the contractor the permit was issued to or an employee of that contractor (this does not include a subcontractor) shall establish a date certain to perform the UST activity by contacting the Office of the State Fire Marshal, Division of Petroleum and Chemical Safety, by telephone at the Springfield office between 8:30 a.m. and 12:00 p.m., at which time a inutually agreed upon date and time for the UST activity shall be scheduled. THIS PERMIT IS VALID FOR SIX MONTHS FROM THE APPROVAL DATE.

(1) OWNER OF TANKS - Corporation, partnership, or other business entity:

Freedom Oil Company

P. O. Box 3697, Bloomington, IL 61702-3697

Contact: Gene Adams (309) 828-7750

(2) FACILITY - name and address where tanks are located:

Freedom Oil #32 1406 N Prospect

Champaign, Champaign Co., IL

Contact: Adams Gene (309) 828-7750

(3) REMOVAL OF TANKS:

- (a) Number and size of tanks being removed: (TK # 1) 6,000 gallons
- (b) Product stored in each tank: (TK # 1) Diesel Fuel
- (c) Reason of tanks being removed: Tank is leaking
- (d) If tank(s) is leaking, indicate IEMA incident number: 080255
- (e) Date each tank was last used: (TK # 1)
- (4) The owner must notify this Office when completion of tank removal has occurred, on the Notification for Underground Storage Tank Form This form can be obtained at www.state.il.us/osfm or by calling (217)785-1020. After removal is completed, the owner/operator shall perform a site assessment by measuring for the presence of a release where contamination is most likely to be present at the UST site. This is in accordance with the Illinois Administrative Code 170.640 (a) regulations and 40 CFR Part 280.72 (a) Federal Register Requirement.
- (5) SPECIAL CONTINGENCIES:

(6) PERSON, FIRM OR COMPANY PERFORMING WORK:

IL Oil Marketing Equipment, Inc.

850 Brenkman Drive Pekin, IL 61554

Contact Person: Chris Epkins Phone: (309) 347-1819

Carried J. Starke

Contractor Registration # 1L-1293 Exp. 02/04/2010

Sincerely,

Daniel Starks

cc: Storage Tank Safety Specialist -Fire Department -Office Coordinator -Division File (Rev. - 6/07)

IL	Notificatio	n for Underground S	Storage Tanks	OFFICE USE ONLY		
• A s	eparate form must	be used for each site.		ID NUMBER		
	ou have more than d attach to this noti	five tanks, photocopy page fication form.	es 1-5	DATE RECEIVED		
ľ	ase type, or print in ertification" (section		· ·			
Facilit	y I.D. # (if known) _2	1-01655C.	Owner I.D. # (if known	n)		
[,	New Facility	Amended (Changes/Correction		rk all that apply:		
	Owner Address Ch	nange (this facility only)	Tanks Relined	I (Permit #)		
Į.		range (all facilities owned)		d (Permit #)		
,	New Owner			ed/Repaired (Permit#)		
1	Tank(s) Removed	(Permit # <u>00348 - 2008</u>) R	Abandonment	Notice (Permit #)		
}		Other				
	l. Ownershi	p of Tank(s)		ntion of Tank(s) s Section I, Mark box)		
FRE Mailing A	EDUM OIL siddress BOX 3C97	State Zip	EREEDOM D Street Address or State 1406 N. PR City CUAMPA 16.N County CHAMPA16N Contact Name	Road, as applicable (exact address) Po SPECT ST State Zip TC (1820 (Area Code) Phone		
	Surrent Owner of To Date Purchased	anks [Ownership Uncerta	in		
	Former Owner	{	Other			
		IV. TYPE OF	FACILITY			
Type of Fac	ility: (Circle correct cod	de)				
	ant um Distributor ience Store aler	G. Industrial/Manufacturing H. Private Institution I. Residence (Non-Farm) J. Farm K. Airport L. Marina	M. City/Town N. County O. State P. Federal (Military) Q. Federal (Non-Military) R. School District	S. Port District T. Utility District U. Fire Dept. V. Other Special Service Districts W. Other (Please Specify)		

V. Description of Undergr	ound Storag	e Tanks (Con	nplete entire c	column for eac	h tank)
Tank Identification Number	Tank No. 1	Tank No	Tank No	Tank No	Tank No.
1. Status of Tanks					r—
Currently in use Temporarily out of use					
(Section 2 must be completed) Permanently out of use (Section 2 must be completed)					
Removed (Section 3 must be completed)					
Abandoned in place (Section 4 must be completed)					
2. Tanks Permanently & Temporarily Out of Use Estimated date last used			_/ /		_/_/_
3. Tanks Removed Date tank(s) removed Estimated date last used	12/15/07	1 1		<u>/ / / </u>	
4. Abandoned in Place Date tanks filled Tank filled with: Inert materials (sand, etc.) Water Unknown Other (please specify)		_/ /_			
5. Age of Tank Date tank installed Date product placed in tank		<u> </u>	<u> </u>	/	
6. Estimated Total Capacity (gallons)	6000				
7. Substances Currently or Last Stored:					
Petroleum Diesel Kerosene Gasoline Used oil Other (Please specify)					
Petroleum Use (if applicable): Heating oil (consumptive use on premises) Back-up generator Other (please specify)					
Hazardous Substance: Name of principal Cercla substance Chemical Abstract Service (CAS No)					

VII. Certification of Compli	ance (Comple	ete for all new, u	pgraded and reli	ned tanks at this	location)	
Installation (mark all that apply)		-		_		
Installer certified by tank and piping manufacturers						
Installer certified or licensed by implementing agency						
Installer registered by implementing agency						
Installer is the owner of the tank(s)						
Installation inspected by a registered engineer						
Installation inspected & approved by implementing agency						
Manufacturer's installation checklists have been completed						
Another method allowed by state agency (please specify)						
OATH: I certify the information that is provided in section VII is true to the best of my knowledge, and certify that the installation was performed in accordance with all applicable state and federal laws and regulations. (THIS SECTION MAY ONLY BE COMPLETED BY THE CONTRACTOR. SEPARATE OATH MUST BE SUBMITTED FOR EACH ACTIVITY PERFORMED BY DIFFERENT CONTRACTOR.) Tank No. Permit No. Permit No.						
Contractor:Name	<u> </u>	Signature (must be original)		Date	
Position			Compa	nny		
	VIII. Financ	ial Responsi	bility			
Mark all that apply:						
Self-Insurance	[]Gu	arantee	Certificate of	Deposit		
Commercial Insu	ırance Su	rety Bond	Trust Fund			
Risk Retention C	GroupLet	tter of Credit	Other Method	d Allowed		
		(ple	ase specify)			
IX. Certification (Read and sign after completing all sections)						
IX. Certification (Read and sign after completing all sections) I certify under penalty of law that I have personally examined and am familiar with the information submitted in this and all attached documents, and that based on my inquiry of those immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete. CHRIS EPRIUS DUNER TONE Name and official title of owner or owner's authorized representative (must be original)						

OFFICE OF THE ILLINOIS STATE FIRE MARSHAL Division of Technical Services

1035 Stevenson Drive Springfield, Illinois 62703-4259 (217)524-7605 FOR OFFICE USE ONLY
Facility # 4-016556
Permit # 00334-2008ABN
Request Rec'd 03/05/2008
Amended Date
Approval Date 3/10/2008 JC
Permit Expires 9/10/2008

Permit for ABANDONMENT IN PLACE of Underground Storage Tank(s) and Piping for Petroleum and Hazardous Substances.

Permission to abandon in place underground storage tank(s) or piping is hereby granted. Such abandonment must be in complete accordance with acceptable materials as specified in the Federal Register, Part II Environmental Protection Agency, 40 CFR Parts 280 and 281, and also with all sections of 41 Illinois Administrative Code, Part 170. The contractor the permit was issued to or an employee of that contractor (this does not include a subcontractor) shall establish a date certain to perform the UST activity by contacting the Office of the State Fire Marshal, Division of Petroleum and Chemical Safety, by telephone at the Springfield office between 8:30 a.m. and 12:00 p.m., at which time a mutually agreed upon date and time for the UST activity shall be scheduled. THIS PERMIT IS VALID FOR SIX MONTHS FROM THE APPROVAL DATE.

(1) OWNER OF TANKS - Corporation, partnership, or other business entity:

Freedom Oil Company

P. O. Box 3697,

Bloomington, IL 61702-3697

Contact: Gene Adams (309) 828-7750

(2) FACILITY - name and address where tanks are located:

Freedom Oil #32

1406 N Prospect

Champaign, Champaign Co., IL

Contact: Adams Gene (309) 828-7750

(3) ABANDONMENT IN PLACE OF TANKS:

- (a) Number and size tanks being abandoned: (TK # 2) 10,000 gallons, (TK # 3, 4) 6,000 gallons, (TK # 5) 2,000 gallons
- (b) Location of tanks being abandoned: CONTAMINATED SITE! IEMA Number: 080255
- (4) This permit is VOID if contamination is revealed during abandonment procedures or if tanks are not as indicated on your granted permit site plan. If contamination is revealed, this abandonment can continue only when the contaminated site section (2) of the certification on site condition has been submitted to our Office.
- (5) SPECIAL CONTINGENCIES: These tanks are in close proximity to the canopy columns. Removal may undermine the structural support of the canopy. Portions of the old piping that will not be re-used for the new system will be abandoned in place, and the remaining portions will be re-used and tied into the new tank piping system and dispensers (see site plan). Tank #1 will have to be removed with a separate removal permit per Dale Tanke 03/10/08. Tanks 7 & 8 will be installed with a separate install permit. New piping for tanks 7 & 8 will "tie in" to the existing piping with a transition sump.
- (6) The owner must notify this Office when completion of tank abandonment has occurred, on the Notification for Underground Storage Tank Form. This form can be obtained at www.state.il.us/osfm or by calling (217)785-1020.

(7) PERSON, FIRM OR COMPANY PERFORMING WORK:

IL Oil Marketing Equipment, Inc. 850 Brenkman Drive

Pekin, IL 61554

Contact Person: Chris Epkins

Phone: (309) 347-1819

James of Coffey

Contractor Registration # IL-1293 Exp. 02/04/2010

Sincerely,

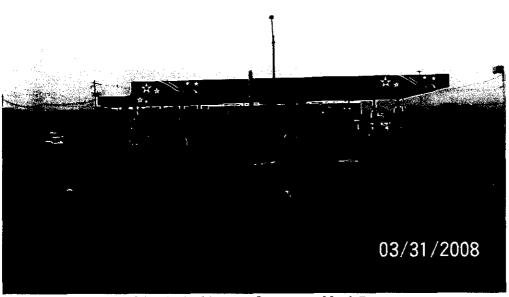
Jim Coffey

cc: Storage Tank Safety Specialist Fire Department Office Coordinator Division File
(Rev. - 1/98)

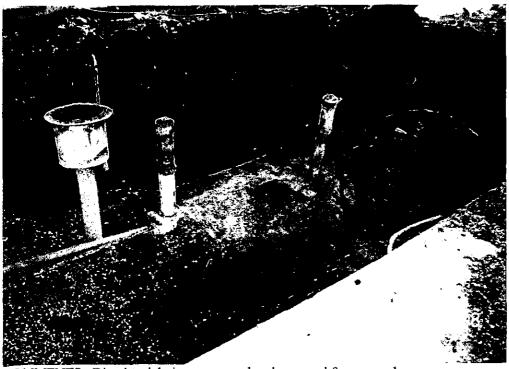
IL Notificatio	n for Underground S	Storage Tanks	OFFICE USE ONLY			
A separate form must	ID NUMBER					
 If you have more than and attach to this not 	five tanks, photocopy page ification form.	es 1-5	DATE RECEIVED			
	n ink; the signature under n IX) must be signed in Ink.					
Facility I.D. # (if known)	1-014554	Owner I.D. # (if known	1)			
		OTIFICATION				
New Facility	Amended (Changes/Correction	ns/Additional Tanks) Mai	rk all that apply:			
Owner Address Ch	nange (this facility only)	Tanks Relined	d (Permit #)			
Owner Address Ch	nange (all facilities owned)	Tanks Installe	d (Permit #)			
New Owner	•	Tanks Upgrad	ed/Repaired (Permit #)			
Tank(s) Removed	(Permit #)	Abandonment	Notice (Permit # 00334 - 2008)			
	Other		ABN			
Ownershi	ip of Tank(s)	1	ation of Tank(s)			
1. 01/10/3/1	p or rank(o)	(if same a	s Section I, Mark box)			
_	I., Public Agency or other Entity)	· ·	any Site Identifier, as applicable			
FREEDOM OIL C	0	FREEDOM OU				
Mailing Address		Street Address or State Road, as applicable (exact address)				
P.O BOX 3697		1406 N. PRO City	SPECT ST.			
City	State Zip	City	State Zip			
BLOGNINGTON	TL 61702-3697	CHAMPAIGN	IC 41820			
County		County				
		CHAMPAIGN				
Contact Name	(Area Code) Phone	Contact Name	(Area Code) Phone			
		•				
	III. TYPE OF OWNER	SHIP (mark all that apply)			
		(mark all all a apply	,			
Current Owner of T		Ownership Uncerta	ain			
Date Purchased	5/1/01					
Former Owner	,	Other				
	IV. TYPE OI	FFACILITY				
Type of Facility: (Circle correct co	de)					
A. Service Station	G. Industrial/Manufacturing	M. City/Town	S. Port District			
B. Bulk Plant	H. Private Institution	N. County	T. Utility District			
C. Petroleum Distributor D. Convenience Store	Residence (Non-Farm) Farm	O. State P. Federal (Military)	U. Fire Dept. V. Other Special			
E. Auto Dealer	K. Airport	Q. Federal (Non-Milit				
F. Commercial/Retail	L. Marina	R. School District	W. Other			
			(Please Specify)			

V. Description of Undergr	V. Description of Underground Storage Tanks (Complete entire column for each tank)								
Tank Identification Number	Tank No. 2	Tank No. 3	Tank No. 4	Tank No. 5	Tank No				
1. Status of Tanks	 								
Currently in use									
Temporarily out of use (Section 2 must be completed)									
Permanently out of use (Section 2 must be completed)									
Removed									
(Section 3 must be completed) Abandoned in place (Section 4 must be completed)									
(Section 4 must be completed) 2. Tanks Permanently &	<u> </u>	<u></u>			<u> </u>				
Temporarily Out of Use Estimated date last used									
3. Tanks Removed Date tank(s) removed	//	/ /	/ /	/ /	/ /				
Estimated date last used		///							
4. Abandoned in Place Date tanks filled Tank filled with:	419108	4/9/08	4/9/08	419/08	_/_/				
Inert materials (sand, etc.) Water Unknown Other (please specify)									
5. Age of Tank			. ,						
Date tank installed Date product placed in tank		_/_/							
6. Estimated Total Capacity (gallons)	10,000	6,000	6,000	2.000					
7. Substances Currently or Last Stored:									
Petroleum Diesel Kerosene Gasoline Used oil Other (Please specify)									
Petroleum Use (if applicable): Heating oil (consumptive use on premises) Back-up generator Other (please specify)									
Hazardous Substance: Name of principal Cercua substance Chemical Abstract Service (CAS No)	1								

VII. Certification of Compli	ance (Compl	ete for all new, u	pgraded and rel	ined tanks at this	s location)	
Installation (mark all that apply)						
Installer certified by tank and piping manufacturers						
Installer certified or licensed by implementing agency						
Installer registered by implementing agency						
Installer is the owner of the tank(s)						
Installation inspected by a registered engineer						
Installation inspected & approved by implementing agency						
Manufacturer's installation checklists have been completed						
Another method allowed by state agency (please specify)						
installation was performed in accordan MAY ONLY BE COMPLETED BY TH ACTIVITY (Tank No. Contractor: Name	E CONTRACTO PERFORMED B	OR. SEPARATE Y DIFFERENT Permit No	OATH MUST E	E SUBMITTED	FOR EACH	
Name		Signature (n	nust be original)		Date	
Position	on		Compa	ny		
	VIII. Financi	al Responsib	oility			
Mark all that apply:						
Self-Insurance	Gua	arantee	Certificate of I	Deposit		
Commercial Insu	rance Sur	ety Bond	Trust Fund			
Risk Retention G	roup Lett	er of Credit	Other Method	Allowed		
		(plea	ase specify)			
IX. Certificatio	n (Read and s	sign after com	pleting all sec	ctions)		
certify under penalty of law that I have personally examined and am familiar with the information submitted in this and all attached documents, and that based on my inquiry of those immediately responsible for obtaining the information, I believe that the submitted information is true, accurate and complete.						
URIS EPKINS OWNER (TOME)	(Jun	Solms		4/10/08	<u></u>	
Name and official title of owner or owner's authorized representative (print)	000	Signature ust be original)		Date S	igned	


APPENDIX D

EARLY ACTION PHOTOGRAPHS


DATE: 4/18/08

SITE NAME: Freedom Oil Company, 1406 North Prospect – Early Action Photographs

PHOTOGRAPHS BY: A. Fetterolf

COMMENTS: View of the site looking east from across North Prospect.

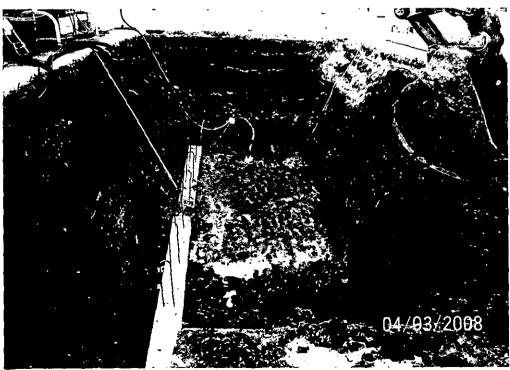
COMMENTS: Diesel tank being uncovered and prepared for removal.

DATE: <u>4/18/08</u>

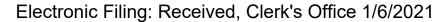
SITE NAME: Freedom Oil Company, 1406 North Prospect – Early Action Photographs

PHOTOGRAPHS BY: A. Fetterolf

COMMENTS: Bottom on the tank pit where the diesel tank was located.


COMMENTS: Diesel tank removed and ready for cleaning.

DATE: 4/18/08


SITE NAME: Freedom Oil Company, 1406 North Prospect – Early Action Photographs PHOTOGRAPHS BY: A. Fetterolf

COMMENTS: Inside of the diesel tank before cleaning.

COMMENTS: View of the excavation.

Midwest Environmental Consulting & Remediation Services Inc.

22200 Illinois Route 9 . P.O. Box 614

Tremont, IL 61568-0614 Phone: (309) 925-5551 • Fax: (309) 925-5606

0190105433-Champoisn Freedom Oil Co Lastrest Tech File

July 1, 2013

Illinois Environmental Protection Agency Bureau of Land -- #24/LUST Section 1021 North Grand Avenue East Post Office Box 19276 Springfield, Illinois 62794-9276 attn: Mr. Dave Myers

PA - DIVISION OF RECORDS MANAGEMENT RELEASABLE

SEP 1 1 2013

REVIEWER RDH

LPC #0910105433 - Champaign County Re:

Freedom Oil Company 1406 North Prospect Champaign, Illinois 61820 Incident #20080255 LUST Technical File

Dear Mr. Myers:

Please find attached the Corrective Action Work Plan (CAP) and Budget for the above referenced site.

If you have any questions or comments feel free to contact my office.

Sincerely,

Midwest Environmental Consulting & Remediation Services, Inc.

Allan Green

President

AJF/glg Job No. 08-24

cc: Mr. Mark Eckhoff

RECEIVED

JUL 08 2013

IEPA/BOL

CORRECTIVE ACTION PLAN AND BUDGET

FREEDOM OIL COMPANY
1406 NORTH PROSPECT
CHAMPAIGN, ILLINOIS 61820
LPC #0910105433 INCIDENT #20080255

JULY 1, 2013

LEAKING UNDERGROUND STORAGE TANK PROGRAM

Corrective Action Work Plan

Subject Site:

Freedom Oil Company
1406 North Prospect

Champaign, Illinois 61820

Incident #20080255

LPC #0910105433 - Champaign County

Prepared for:

Freedom Oil Company 814 West Chestnut Street Bloomington, Illinois 61701

(309) 828-7750

Contact: Mr. Mark Eckhoff

Prepared by:

Midwest Environmental Consulting

and Remediation Services, Inc.

22200 Illinois Route 9 Post Office Box 614

Tremont, Illinois 61568-0614 Contact: Allan Green, President

For Review by:

Illinois Environmental Protection Agency

Bureau of Land - #24

Leaking Underground Storage Tank Section

1021 North Grand Avenue East

Post Office Box 19276

Springfield, Illinois 62794-9276

RECEIVED

JUL 08 2013

IEPA/BOL

TABLE OF CONTENTS

CORRECTIVE ACTION WORK PLAN

FORMS

IEPA CORRECTION ACTION PLAN FORM

SECTIONS

CORRECTION ACTION PLAN

TABLES

Table 1	Site Investigation Soil Analytical Data
Table 2	Site Investigation Groundwater Analytical Data

FIGURES

Figure I	Area Map
Figure 2	Site Map
Figure 3	Soil Boring Location Map
Figure 4	Estimated Extent of Soil Contamination
Figure 5	Estimated Extent of Groundwater Contamination
Figure 6	TACO Plume Measurements
Figure 7	Tier 2 Plume Measurements
Figure 8	Proposed Excavation Extents
Figure 9	Proposed Off-Site Boring Locations

APPENDICES

Laboratory Data Reports
Sampling Protocol
TACO Documents
Corrective Action Budget

IEPA CORRECTION ACTION PLAN FORM

Electronic Filing: Received, Clerk's Office 1/6/2021

The Agency is authorized to require this information under Section 4 and Title Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an adequate penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a fatse material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/57.17). This

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program **Corrective Action Plan**

Α.	Site	e Identi	ification	0190105433
	IEM	A Incide	nt # (6- or 8-digit):	0-digit): 0910105433
	Site	Name: _	Freedom Oil Company	
	Site	Address	(Not a P.O. Box): <u>1406 North Prospect</u>	
	City:	Champ	paign County: Champaign	ZIP Code: 61820
	Leak	king UST	Technical File	-
B.	Site	Inforr	mation	
	1.	Will t	the owner or operator seek reimbursement from	
		the (Jnderground Storage Tank Fund?	Yes 🗹 No 🗌
	2.	If yes	s, is the budget attached?	Yes ☑ No 🗌
	3.	Is thi	is an amended plan?	Yes ☐ No 🗹
	. 4.	Ident	tify the material(s) released: <u>gasoline and diesel t</u>	iuel
	5.	This	Corrective Action Plan is submitted pursuant to:	
		a.	35 III. Adm. Code 731.166	
			The material released was: -petroleum	<u>.</u>
			-hazardous substance (see Environme	ental
			Protection Act Section 3.215)	
		b.	35 III. Adm. Code 732,404	
		C.	35 III. Adm. Code 734,335	
C.	Pro	posed	Methods of Remediation	
	1.	Soil_	TACO analysis/excavation	
	2.	Grou	ndwater TACO analysis	
D.	Soil 731 d	and G	Froundwater Investigation Results (for in 32 that were classified using Method One or Two,	cidents subject to 35 III. Adm. Code if not previously provided)
	Provi	ide the fo	ollowing:	
	1.	Desc grour	ription of investigation activities performed to define not a defined water contamination;	
	2.	Analy	rtical results, chain-of-custody forms, and laborato	RECEIVED
		,		JUL 08 2013

IL 532 2287 LPC 513 Rev. March 2006

Corrective Action Plan 1 of 4

IEPA/BOL

- Tables comparing analytical results to applicable remediation objectives;
- Boring logs;
- 5. Monitoring well logs; and
- Site maps meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440 and showing:
 - Soil sample locations:
 - b. Monitoring well locations; and
 - c. Plumes of soil and groundwater contamination.

E. Technical Information - Corrective Action Plan

Provide the following:

- Executive summary identifying the objectives of the corrective action plan and the technical approach to be utilized to meet such objectives;
 - a. The major components (e.g., treatment, containment, removal) of the corrective action plan;
 - b. The scope of the problems to be addressed by the proposed corrective action; and
 - A schedule for implementation and completion of the plan;
- Identification of the remediation objectives proposed for the site;
- A description of the remedial technologies selected:
 - The feasibility of implementing the remedial technologies;
 - b. Whether the remedial technologies will perform satisfactorily and reliably until the remediation objectives are achieved; and
 - A schedule of when the technologies are expected to achieve the applicable remediation objectives;
- A confirmation sampling plan that describes how the effectiveness of the corrective action activities will be monitored during their implementation and after their completion;
- A description of the current and projected future uses of the site;
- 6. A description of engineered barriers or institutional controls that will be relied upon to achieve remediation objectives:
 - a. an assessment of their long-term reliability;
 - b. operating and maintenance plans; and
 - c. maps showing area covered by barriers and institutional controls;
- The water supply well survey:
 - a. Map(s) showing locations of community water supply wells and other potable wells and the setback zone for each well;
 - b. Map(s) showing regulated recharge areas and wellhead protection areas;
 - c. Map(s) showing the current extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;
 - d. Map(s) showing the modeled extent of groundwater contamination exceeding the most stringent Tier 1 remediation objectives;
 - e. Tables listing the setback zone for each community water supply well and other potable water supply wells;
 - f. A narrative identifying each entity contacted to identify potable water supply wells, the name and title of each person contacted, and any field observations associated with any wells identified; and
 - g. A certification from a Licensed Professional Engineer or Licensed Professional Geologist that the survey was conducted in accordance with the reputation submitted includes information obtained as a result of the survey (certification of this plan satisfies this requirement);

JUL 08 2013

IEPA/BOL

- 8. Appendices:
 - a. References and data sources report that are organized; and
 - b. Field logs, well logs, and reports of laboratory analyses;
- Site map(s) meeting the requirements of 35 III. Adm. Code 732.110(a) or 734.440;
- 10. Engineering design specifications, diagrams, schematics, calculations, manufacturer's specifications, etc.;
- A description of bench/pilot studies;
- Cost comparison between proposed method of remediation and other methods of remediation;
- 13. For the proposed Tier 2 or 3 remediation objectives, provide the following:
 - a. The equations used;
 - b. A discussion of how input variables were determined;
 - c. Map(s) depicting distances used in equations; and
 - d. Calculations:
- 14. Provide documentation to demonstrate the following for alternative technologies:
 - The proposed alternative technology has a substantial likelihood of successfully achieving compliance with all applicable regulations and remediation objectives;
 - The proposed alternative technology will not adversely affect human health and safety or the environment;
 - c. The owner or operator will obtain all Illinois EPA permits necessary to legally authorize use of the alternative technology;
 - d. The owner or operator will implement a program to monitor whether the requirements of subsection (14)(a) have been met;
 - e. Within one year from the date of Illinois EPA approval, the owner or operator will provide to the Illinois EPA monitoring program results establishing whether the proposed alternative technology will successfully achieve compliance with the requirements of subsection (14)(a); and
 - f. Demonstration that the cost of alternative technology will not exceed the cost of conventional technology and is not substantially higher than at least two other alternative technologies, if available and technically feasible.
- 15. Property Owner Summary form.

F. Exposure Pathway Exclusion

Provide the following:

- A description of the tests to be performed in determining whether the following requirements will be met:
 - a. Attenuation capacity of the soil will not be exceeded for any of the organic contaminants:
 - b. Soil saturation limit will not be exceeded for any of the organic contaminants;
 - Contaminated soils do not exhibit any of the reactivity characteristics of hazardous waste per 35 III. Adm. Code 721.123;
 - d. Contaminated soils do not exhibit a pH \leq 2.0 or \geq 12.5; and
 - e. Contaminated soils which contain arsenic, barium, cadmium, chromium, lead, mercury, or selenium (or their associated salts) do not exhibit any of the toxicity characteristics of hazardous waste per 35 Ill. Adm. Code 721.124.
- 2. A discussion of how any exposure pathways are to be excluded.

Corrective Action Plan 3 of 4

G. Signatures

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator Consultant Name: Freedom Oil Company Company: M.E.C.R.S. Contact: Mr. Mark Eckhoff Contact: Mr. Allan Green Address: 814 West Chestnut Street Address: _22200 IL Route 9, P.O. Box 614 City: Bloomington City: _ Tremont State: Illinois State: Illinois ZIP Code: 61702 ZIP Code: 61568 Phone: (309) 925-5551 Signature: Signature: Date:

I certify under penalty of law that all activities that are the subject of this plan were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this plan has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 Ill. Adm. Code 731, 732 or 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].

Licensed Professional Engineer or Geologist L.P.E. or L.P.G. Seal

Name: Penny Silzer
Company: Midwest Environmental
Address: 22200 IL Route 9, P.O. Box 614
City: Tremont
State: Illinois
ZIP Code: 61568
Phone: (309) 925-5551
III. Registration No.: 196-000256
License Expiration Date: 03/81/15
Signature: My Son
Date:
, , , , , , , , , , , , , , , , , , ,

RECEIVED

JUL 08 2013

IEPA/BOL

Corrective Action Plan 4 of 4 **Corrective Action Plan**

Section E. Technical Information - Corrective Action Plan

MECRS proposes a phased approach to corrective action at the site. First, on-site contaminated soils above site specific Tier 2 cleanup objectives will be excavated. Additionally, at the request of the adjacent off-site property owner, additional soil samples will be collected to the south of MW-1 to determine the full degree and extent of contamination. If contaminated soils are encountered, an amended CAP and budget will be submitted to propose excavation of soils to the south of the site to Tier 1 cleanup objectives. Second, groundwater quality will be monitored following excavation activities, to determine the need for additional corrective action, institutional controls, and/or engineered barriers. Third, a TACO analysis will be completed based on the results of the excavation soil samples and post excavation groundwater data. The TACO results may indicate the need for additional corrective action to address off-site contamination such as engineered barriers and/or institutional controls including a Highway Authority Agreement with the city of Champaign for Prospect Avenue to the west.

1. Executive summary identifying the objectives of the corrective action plan and the technical approach to be utilized to meet such objectives.

A Site Investigation was conducted and completed as reported in the Site Investigation Completion Report dated 7/11/11. As part of the Corrective Action activities, a Tiered Approach to Cleanup Objectives (TACO) evaluation of the site was conducted. The residential exposure scenario was eliminated by limiting land use to industrial/commercial. MECRS proposes to eliminate exposure pathways for the industrial/commercial population by excavating the contaminated soils on-site. BTEX and PNA concentrations in soil do not exceed the ingestion exposure pathway for the construction worker exposure scenario. Alternative CUOs for BTEX and PNAs in soil were developed for the inhalation exposure pathway for the construction worker population. Calculation of the Tier 2 CUOs for the construction worker and the inhalation exposure pathway indicate that concentrations of BTEX and PNAs above Tier 2 CUOs remain in the soil and need to be addressed.

The extent of contamination above Tier 2 objectives has been defined. Significant subsurface petroleum hydrocarbon concentrations exist in the vicinity of the gasoline and diesel fuel underground storage tanks. The high levels of BTEX and PNAs that exist in the vicinity of the fueling islands are evidence that both the gasoline tanks and the diesel tank at the site have had a release. MECRS proposes to address the concentrations of BTEX and PNAs in the native soil by removing the diesel tank and abandoning-in-place the gasoline tanks that would be incredibly difficult to remove. In addition, MECRS proposes to remove all accessible contaminated soils in the vicinity of the fueling islands. It is anticipated that the accessible soils to the west of the fueling island near MW-3 and the accessible soils to the north of the fueling islands that are part of the TACO plume will need to be removed. Approximately 1,185 cubic yards of contaminated soils will be removed from the site. Appropriate soil samples will be retrieved from the excavation extents to verify successful removal of contaminated soils. The excavation will be backfilled with clean material and the existing pavement will be replaced. Additionally, the owner of the off-site properties to the north and south of the subject site has requested that his properties be cleaned up to the fullest extent possible. The only contamination that can

potentially migrate to the property to the north is present in groundwater samples collected from MW-9. The contamination that can potentially migrate to the property to the south is present in soil samples collected from MW-1. MECRS proposes three additional soil borings, as shown in Figure 9, in the immediate vicinity of MW-1 at the southern property boundary to determine the extent of migration of contamination to the south. The borings will be completed prior to the previously outlined excavation activities. If it is determined that the contamination present in the soil at MW-1 has migrated to the south, an amended Corrective Action budget will be submitted to propose an additional excavation of off-site soils to meet Tier 1 CUOs.

The TACO evaluation is presented in Appendix C. Site maps are included in Figures 1 through 9. A budget for the proposed scope of work for this phase of corrective action is provided in Appendix D.

2. Identification of the remediation objectives proposed for the site.

The materials released at the site were gasoline and diesel fuel. The indicator contaminants for gasoline and diesel fuel are benzene, toluene, ethylbenzene, and xylenes (BTEX) and polynuclear aromatics (PNAs). The only PNA with levels above Tier 1 CUOs during the entire sampling process has been naphthalene. Institutional controls will limit land use to industrial/commercial. Depth to the water has been above ten (10) feet of the ground surface. Based on groundwater above ten (10) feet of the ground surface, groundwater should be classified as Class II groundwater. Initial cleanup objectives are based on IEPA Tier 1 objectives for industrial/commercial property and Class II groundwater.

The soil sampling parameters and corresponding CUOs are:

Analyte	Method	CUO (Tier 1)
MTBE	EPA 5035/8021B	$320.0~\mu \mathrm{g/kg}$
<u>BTEX</u>		
Benzene	EPA 5035/8021B	$30.0~\mu\mathrm{g/kg}$
Toluene	EPA 5035/8021B	$12,000~\mu \mathrm{g/kg}$
Ethylbenzene	EPA 5035/8021B	$13,000~\mu\mathrm{g/kg}$
Xylenes	EPA 5035/8021B	$5,600~\mu\mathrm{g/kg}$
T> 7 A		
<u>PNA</u>	777	
Naphthalene	EPA 8270C	1,800 μ g/kg

MTBE concentrations in soil do not exceed the Tier 1 CUO for Class II groundwater in any of the samples collected.

Benzene concentration in soil exceed the Tier 1 CUO for Class II groundwater in samples MW-1 (7'), MW-3 (5'), MW-3 (7'), LF-2, and LF-3.

Toluene concentration in soil do not exceed the Tier 1 CUO for Class II groundwater in any of the samples collected.

Ethylbenzene concentration in soil exceed the Tier 1 CUO for Class II groundwater in samples MW-3 (7').

Total Xylenes concentration in soil exceed the Tier 1 CUO for Class II groundwater in samples MW-3 (5') and MW-3 (7').

Naphthalene concentration in soil exceed the Tier 1 CUO for Class II groundwater in samples MW-3 (7').

Tier 2 CUOs were calculated using the TACO Plus! Version 1.3.0. developed by ATR Associated, Inc., Arlington, Virginia and the SSL equations. Based on information gathered during site investigation activities, historical trend for groundwater flow direction is towards the north/northeast. The hydraulic gradient across the site is approximately .021 ft/ft. The TACO plume is shown in Figure 3. The soil contaminant plume width (clean boring to clean boring) is approximately 267 ft or 81m (perpendicular to groundwater flow in the horizontal plane) and approximately 8 ft or 2.5m thick (perpendicular to groundwater flow in the vertical plane). The hydraulic conductivity value, 5.32 X 10⁻⁵ cm/sec, was determined during Site Investigation activities.

The following site specific values were used:

Sample #	pН	foc	Bulk Density	Soil Particle Density	Total Soil Porosity	Percent Moisture
surface	7.40	2.90%	1.26 g/cm ³	2.52	0.50	42.8%
subsurface	7.77	0.87%	1.50 g/cm ³	2.64	0.43	27.8%

The following Tier 2 CUOs were calculated for Benzene:

EXPOSURE POPULATION	Exposure Scenario	Benzene CUO
Industrial/Commercial	Inhalation	1,480 ppb
Industrial/Commercial	Ingestion	197,350 ppb
Construction Worker	Inhalation	2,080 ppb
Construction Worker	Ingestion	4,282,810 ppb
Protection of Groundwater		366.2 ppb

Benzene concentrations exceed the calculated Tier 2 CUOs in soil samples MW-3 (5'), MW-3 (7'), and LF-3. MECRS proposes to excavate as described above.

The following Tier 2 CUOs were calculated for Ethylbenzene:

EXPOSURE POPULATION	Exposure Scenario	E-Benzene CUO
Industrial/Commercial	Inhalation	1,814,350 ppb
Industrial/Commercial	Ingestion	204,400,000 ppb
Construction Worker	Inhalation	51,250 ppb
Construction Worker	Ingestion	20,404,510 ppb
Protection of Groundwater		67,730.5 ppb

Ethylbenzene concentrations exceed the calculated Tier 2 CUOs in soil sample MW-3 (7'). MECRS proposes to excavate as described above.

The following Tier 2 CUOs were calculated for Total Xylenes:

EXPOSURE POPULATION	Exposure Scenario	Xylenes CUO
Industrial/Commercial	Inhalation	1,437,500 ppb
Industrial/Commercial	Ingestion	1 x 10 ⁹ ppb
Construction Worker	Inhalation	20,350 ppb
Construction Worker	Ingestion	408,090,290 ppb
Protection of Groundwater		462,024 ppb

Total xylene concentrations exceed the calculated Tier 2 CUOs in soil samples MW-3 (5') and MW-3 (7'). MECRS proposes to excavate as described above.

The following Tier 2 CUOs were calculated for Naphthalene:

EXPOSURE POPULATION	Exposure Scenario	Naphthalene CUO
Industrial/Commercial	Inhalation	243,870 ppb
Industrial/Commercial	Ingestion	81,760,000 ppb
Construction Worker	Inhalation	1,580 ppb
Construction Worker	Ingestion	8,161,810 ppb
Protection of Groundwater		13,729.4 ppb

Naphthalene concentrations exceed the calculated Tier 2 CUOs in soil sample MW-3 (7'). MECRS proposes to excavate as described above.

TACO calculation input parameters and supporting documents created with TACO Plus! are attached.

All laboratory data is presented in Tables 1 and 2. All sample locations are shown in Figure 2. The extent of soil contamination above Tier 2 CUOs is shown in Figure 4. The proposed excavation area is shown in Figure 5.

3. A description of the remedial technologies selected.

Excavation and disposal has been proven to be effective in immediately removing major sources of soil contamination. Excavation is proposed to remove the source of contamination at the site which is the area to the west and northwest of the station building and canopy. It is our belief that the elimination of the contaminant source material will have a significant effect on contaminant concentrations in downgradient areas at the site. An area of approximately 3,200 square feet will be excavated to a depth of approximately 10 feet or until the groundwater table is encountered (approximately 1,185 cubic yards). The proposed excavation area is shown in Figure 5.

4. A confirmation sampling plan that describes how the effectiveness of the corrective action activities will be monitored during their implementation and after their completion.

During excavation activities, samples will be retrieved from the excavation extents. One sample will be obtained from every 20 linear feet of sidewall, and one sample from every 400 square feet of floor for a total of 21 wall samples and 8 floor samples. Samples will be submitted for laboratory analysis of BTEX and PNAs. Sample results will be compared to the calculated Tier 2 CUOs for cleanup verification. MECRS also proposes to collect groundwater samples from all wells following excavation activities. MECRS sampling protocol is provided in Appendix B.

5. A description of the current and projected future uses of the site.

The site is currently being used as a gas station and convenience store.

6. A description of engineered barriers or institutional controls that will be relied upon to achieve remediation objectives.

An industrial/commercial land use restriction will be placed on the site. At this time, no additional preventive, engineering, or institutional controls are proposed. However, paving on the lot may be proposed in the future for use as an engineered barrier, if necessary.

7. The water supply well survey.

The water well survey was reported in the 45-Day report.

8. Appendices.

Please see Appendix A for TACO parameter lab results.

Please see Appendix B for sampling protocol.

Please see Appendix C for the TACO Study.

Please see Appendix D for the Corrective Action Plan Budget

9. Site map(s) meeting the requirements of 35 Ill. Adm. Code 732.110(a) or 734.440.

Please see Figure 1 through 6.

10. Engineering design specifications, diagrams, schematics, calculations, manufacture's specifications, etc.

Not applicable

11. A description of bench/pilot studies.

Not applicable.

12. Cost comparison between proposed method of remediation and other methods of remediation.

Not applicable.

- 13. For the proposed Tier 2 or 3 remediation objectives, provide the following:
 - a. The equations used;
 - b. A discussion of how input variables were determined;
 - c. Map(s) depicting distances used in equations; and
 - d. Calculations.

For a complete description of the TACO study, please see Appendix C.

- 14. Provide documentation to demonstrate that following for alternative technologies:
 - a. The proposed alternative technology has a substantial likelihood of successfully achieving compliance with all applicable regulations and remediation objectives;
 - b. The proposed alternative technology will not adversely affect human health and safety or the environment;
 - c. The owner or operator will obtain all Illinois EPA permits necessary to legally authorize use of the alternative technology;
 - d. The owner or operator will implement a program to monitor whether the requirements of subsection (14)(a) have been met;
 - e. Within one year form the date of Illinois EPA approval, the owner or operator will provide the Illinois EPA monitoring program results establishing whether the proposed alternative technology will successfully achieve compliance with the requirements of subsection (14)(a); and
 - f. Demonstration that the cost of alternative technology will not exceed the cost of conventional technology and is not substantially higher than at least two other alternative technologies, if available and technically feasible.

Not applicable.

15. Property Owner Summary form.

Will be submitted with the Corrective Action Completion Report.

Section F. Exposure Pathway Exclusion

- 1. A description of the tests to be performed in determining whether the following requirements will be met:
 - a. Attenuation capacity of the soil will not be exceeded for any of the organic contaminants.
 - b. Soil saturation limit will not be exceeded for any of the organic contaminants.
 - c. Contaminated soils do not exhibit any of the reactivity characteristics of hazardous waste per 35 Ill. Adm. Code 721.123.
 - d. Contaminated soils do not exhibit a pH \leq 2.0 or \geq 12.5; and
 - e. Contaminated soils which contain arsenic, barium, cadmium, chromium, lead, mercury, or selenium (or their associated salts) do not exhibit any of the toxicity characteristics of hazardous waste per 35 Ill. Adm. Code 721.124.

Not applicable.

2. A discussion of how any exposure pathways are to be excluded.

For a complete description of exposure pathway exclusion please see the TACO study in Appendix C.

Table 1 Site Investigation Soil Analytical Data

Electronic Filing: Reconnects. Clerk's Office 1/6/2021 SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-1 3' 08/19/08	MW-1	MW-1	MW-1 17'	MW-2 3'	MW-2 9'	MW-2 15'
SAMPLEDATE	Remediation Obj.	08/19/08	08/19/08	08/19/08	08/19/08	08/19/08	08/19/08	08/19/08
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<>	73.9	21.3	<mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<>	<mdl< td=""><td>13.6</td></mdl<>	13.6
Benzene	30	<mdl_< td=""><td>140</td><td>2.2</td><td>1.9</td><td>4.3</td><td>13.1</td><td>3.0</td></mdl_<>	140	2.2	1.9	4.3	13.1	3.0
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<>	2.9	2.3	2.7	<mdl< td=""><td>5.4</td></mdl<>	5.4
Ethylbenzene	13,000	5.0	5,460	2.2	<mdl< td=""><td>2.8</td><td>61,5</td><td>3.1</td></mdl<>	2.8	61,5	3.1
Total Xylenes	5,600	7,1	519	<mdl< td=""><td><mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<></td></mdl<>	<mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<>	7.3	124	7.4
PNAs								
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdł< td=""><td><mdl< td=""></mdl<></td></mdł<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdł< td=""><td><mdl< td=""></mdl<></td></mdł<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdł< td=""><td><mdl< td=""></mdl<></td></mdł<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdł< td=""><td><mdl< td=""></mdl<></td></mdł<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdł< td=""><td><mdl< td=""></mdl<></td></mdł<></td></mdl<>	<mdł< td=""><td><mdl< td=""></mdl<></td></mdł<>	<mdl< td=""></mdl<>
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	_ <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Вепzо (а) Рутепе	800	127	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<></td></mdl<>	<mīdīl< td=""><td><mdl< td=""></mdl<></td></mīdīl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	84.6	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></midl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl td="" ·<=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl></td></mdl<>	<mdl td="" ·<=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""></midl<></td></mdl<>	<midl< td=""></midl<>
Naphthalene	1,800	<mdl< td=""><td>190</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	190	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	ХХ	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ругепе	4,200,000	570	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Electronic Filing: Received 1. Clerk's Office 1/6/2021 SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

<u> </u>		MW-3	MW-3	MW-3	MW-4	MW-4	MW-4	MW-5
Analytes/ Sample ID:	Tier I Soil	5'	7*	13'	31	<i>7</i> '	13'	3'
SAMPLE DATE	Remediation Obj.	08/19/08	08/19/08	08/19/08	08/19/08	08/19/08	08/19/08	08/19/03
мтве	320	<mdl< td=""><td><mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	26.0	<mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<>	6.3	<mdl< td=""></mdl<>
								1122
Benzene	30	6,350	3,120	2.9	<mdl< td=""><td>3.1</td><td>3.1</td><td><mdl< td=""></mdl<></td></mdl<>	3.1	3.1	<mdl< td=""></mdl<>
Toluene	12,000	514	619	2.4	<mdl< td=""><td>4.5</td><td>5,5</td><td>1.6</td></mdl<>	4.5	5,5	1.6
Ethylbenzene	13,000	11,500	106,000	3.7	<mdl< td=""><td>9.5</td><td>4.0</td><td><mdl< td=""></mdl<></td></mdl<>	9.5	4.0	<mdl< td=""></mdl<>
Total Xylenes	5,600	27,400	428,000	10.9	<mdl< td=""><td>14.0</td><td>9.1</td><td><mdl< td=""></mdl<></td></mdl<>	14.0	9.1	<mdl< td=""></mdl<>
PNAs								
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	ХХ	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td>_ <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>_ <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	_ <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Вепло (а) Рутепе	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	. xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl_< td=""></mdl_<></td></mdl<>	<mdl_< td=""></mdl_<>
Fluoranthene	4,300,000	205	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""></midl<></td></mdl<>	<midl< td=""></midl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	367	2,830	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx	106	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Рутепе	4,200,000	209	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Electronic Filing: Received 1. Clerk's Office 1/6/2021 SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

		MW-5	MW-5	B-1	B-1	B-1	B-2	B-2
Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	7' 08/19/08	13' 08/19/08	3' 01/25/11	<i>7</i> ' 01/25/11	12' 01 /25/11	3' 01/25/11	7' 01/25/11
				711-1-1				
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.36	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs								
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Рутепе	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Electronic Filing: Receibed 1. Clerk's Office 1/6/2021 SOIL ANALYTICAL RESULTS Freedom Oil Company

Freedom Oil Compan Champaign, IL

	1	B-2	MW-6	MW-6	MW-7	MW-7	MW-8	MW-8
Analytes/ Sample ID:	Tier I Soil	12'	3'	7'	3'	7'	3'	7
SAMPLE DATE	Remediation Obj.	01/25/11	03/24/11	03/24/11	03/24/11	03/24/11	03/24/11	03/24/11
						-		
MTBE	320	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
							ĺ	
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	4.65	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
	_				_			
Ethylbenzene	13,000	<mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl_<></td></mdl<>	<mdl_< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl_<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
T-1-1 V-1	5.600	43.007	a) (D)	e) (D)	-24D/	4001	->407	->.m
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs								
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
7 tooliaptiicis	370,000	4.00		4.12.2		***************************************		
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
								Ü
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<>	<mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
 					1	l		ا ا
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>⊲MDL</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>⊲MDL</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>⊲MDL</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>⊲MDL</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>⊲MDL</td><td><mdl< td=""></mdl<></td></mdl<>	⊲MDL	<mdl< td=""></mdl<>
B (b) El	5 000	-14D1	- A.D.I	< NOTE:	<mdl< td=""><td> ⊲MDL</td><td> <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	 ⊲MDL	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>\MIDL</td><td>MDL</td><td>- VILLE</td><td>\WIDL</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>\MIDL</td><td>MDL</td><td>- VILLE</td><td>\WIDL</td></mdl<></td></mdl<>	<mdl< td=""><td>\MIDL</td><td>MDL</td><td>- VILLE</td><td>\WIDL</td></mdl<>	\MIDL	MDL	- VILLE	\WIDL
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>. <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>. <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>. <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	. <mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Denizo (girgi) i er yieno	701	441515	**************************************	-11122		1.2.3	4.222	1.22
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
		<u> </u>						
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h)	-							
Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
.			l	١			3.50	4.57
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td> <mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Finotene	300,000	- IVIDL	NIDL	-IMDL	-IAIT\[- IVIDE	- WIDE	- VIVIL
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""><td>· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td> <mdl< td=""><td>· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td> <mdl< td=""><td>· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td> <mdl< td=""><td>· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	· <mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
123110 (1,2,5 00) 1 910110	5,000		1			 	,,,,,,,	† · · · · ·
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
	<u> </u>				 	 		<u> </u>
Phenanthrene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Electronic Filing: Receibed J. Clerk's Office 1/6/2021 SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

	$\overline{}$			-	·		
Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-9 3' 03/24/11	MW-9 7' 03/24/11				
мтве	320	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Benzene	30	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Toluene	12,000	<mdl< td=""><td>9,06</td><td></td><td></td><td></td><td></td></mdl<>	9,06				
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
PNAs							
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td> </td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td> </td><td></td><td></td><td></td></mdl<>	 			
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<>			<u> </u>	
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Вепло (а) Рутепе	800	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Benzo (b) Fluoranthene	5,000	<modl< td=""><td><midl< td=""><td> </td><td></td><td></td><td></td></midl<></td></modl<>	<midl< td=""><td> </td><td></td><td></td><td></td></midl<>	 			
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<>			<u> </u>	
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td> </td><td>-</td><td><u> </u></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td> </td><td>-</td><td><u> </u></td><td></td></mdl<>	 	-	<u> </u>	
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td> </td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td> </td><td></td><td></td><td></td></mdl<>	 			
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td><u> </u></td><td></td></mdl<>			<u> </u>	
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td> <u> </u></td><td>ļ<u>.</u></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td> <u> </u></td><td>ļ<u>.</u></td><td></td><td></td></mdl<>	 <u> </u>	ļ <u>.</u>		
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td>ļ</td><td><u> </u></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td>ļ</td><td><u> </u></td></mdl<>			ļ	<u> </u>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td>ļ<u> </u></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td>ļ<u> </u></td></mdl<>				ļ <u> </u>
Phenanthrene	xx	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td><u> </u></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td><u> </u></td></mdl<>				<u> </u>
Рутепе	4,200,000	<mdl< td=""><td><mdl< td=""><td></td><td></td><td></td><td></td></mdl<></td></mdl<>	<mdl< td=""><td></td><td></td><td></td><td></td></mdl<>				

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

TACO Parameters

· —			Bulk	Particle	%	
Sample #	foc	рΗ	Density	Density	Moisture	Porosity
Surface	2.90%	7.40	1.26	2.52	42.8%	0.50
Subsurface	0.87%	7.77	1.50	2.64	27.8%	0.43

SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID:	Tier I Soil	Landfill 1 (LF-1)	Landfill 2 (LF-2)	Landfill 3 (LF-3)	
SAMPLE DATE	Remediation Obj.	04/01/08	04/01/08	04/01/08	
Benzene	30	<2.5	280	923	
Toluene	12,000	5.6	<164	<311	
Ethylbenzene	13,000	<2.5	201	2,150	
Total Xylenes	5,600	<6.2	1,140	2,960	
MTBE	320	NA	NA	NA	
PNAs					
Acenapthene	570,000	<84.0	<89.9	<83.8	
Acenapthylene	xx	<84.0	<89.9	<83.8	
Anthracene	12,000,000	<251	<268	<250	
Benzo (a) Anthracene	2,000	<251	<268	<250	
Benzo (a) Pyrene	800	<84.0	<89.9	<83.8	
Benzo (b) Fluoranthene	5,000	<417	<447	<416	
Benzo (g,h,i) Perylene	xx	<251	<268	<250	
Benzo (k) Fluoranthene	49,000	<251	<268	<250	
Chrysene Dibenzo (a,h)	160,000	<84.0	<89.9	<83.8	
Anthracene	800	<84.0	<89.9	<83.8	
Fluoranthene	4,300,000	<84.0	<89.9	<83.8	
Fluorene	560,000	<84.0	<89.9	<83.8	
Ideno (1,2,3-cd) Pyrene	8,000	<84.0	<89.9	<83.8	
Naphthalene	1,800	<84.0	<89.9	514	
Phenanthrene	xx	<84.0	<89.9	<83.8	
Рутепе	4,200,000	<84.0	<89.9	<83.8	

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

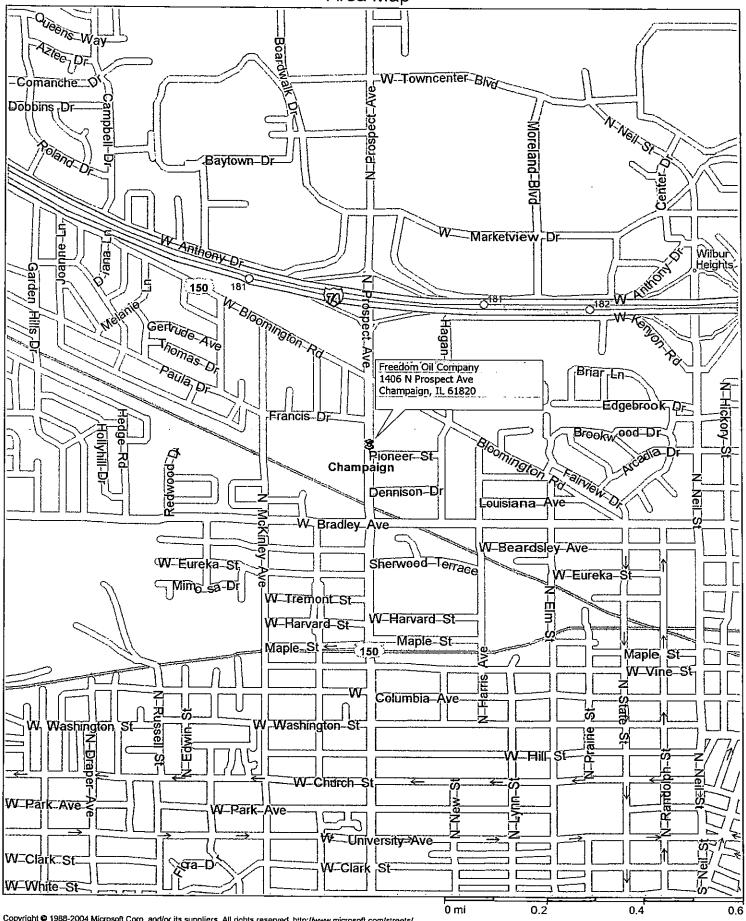
Table 2

Site Investigation Groundwater Analytical Data

Table 2: Groundwater Analytical Data Freedom Oil Company Champaign, Illinois

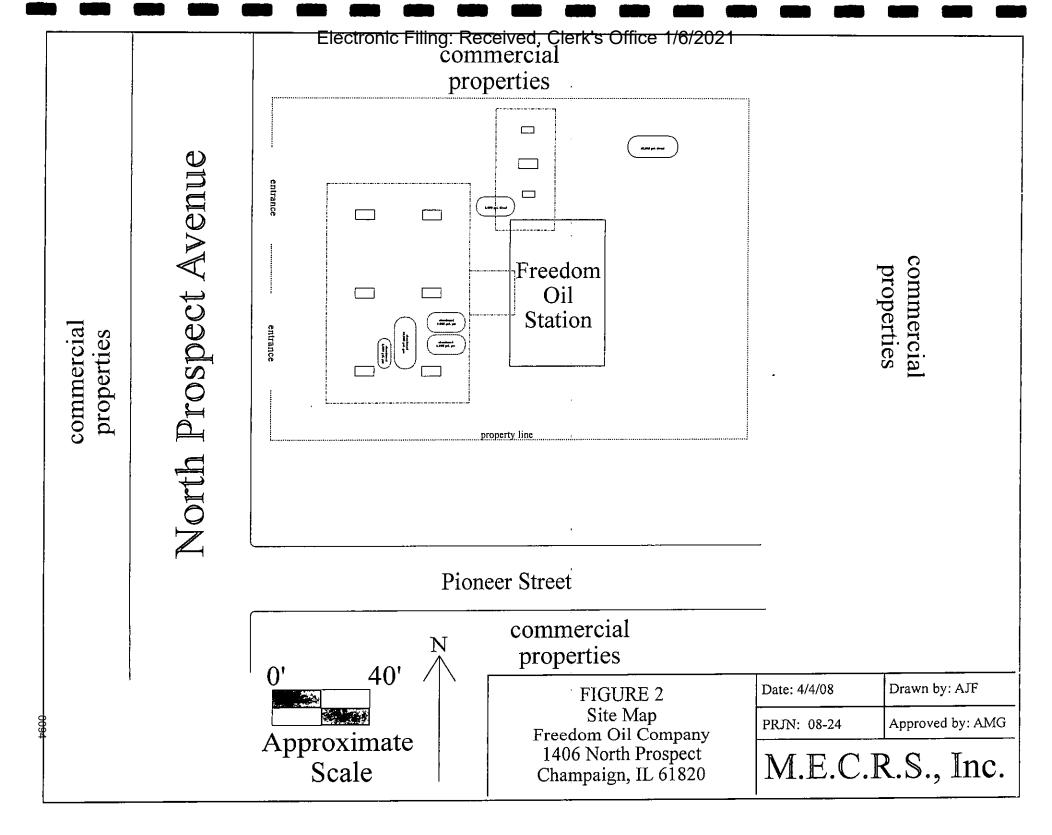
				-						
Sample#	Date	DTW	GWE	Benzene	Toluene	E-benzene	Xylenes	Total BTEX	МТВЕ	Napthalene
MW-1 Elevation Top of Casing = 98.48					I					
1	11/12/2008		92.31	16,200	10,700	0.240	20.400	(4.540	200	1 200 1
⊩;	3/31/2011	5.95	92.53	1,390	6.45	8,240 575	29,400	64,540	<200	1,300
<u> </u>	3/31/2011	3.93	72.33	1,390	0.43	3/3	27.1	1,423.55	60.7	86.3
MW-2 Elevation Top of Casing = 100.00										
1	11/12/2008		93.26	5,150	86.5	4,940	10,200	20,376.5	101	1,170
2	3/31/2011	6.68	93.32	11.1	<5.00	<5.00	<15.0	<36.1	22.9	<mdl< td=""></mdl<>
	•	·	•						11	
MW-3	Elevation To	p of Cas	ing =	96.62	l					
1	11/12/2008		91.27	2.4	<2.0	<2.0	<5.0	<11.4	<2.0	<mdl< td=""></mdl<>
2	3/31/2011	5.40	91.22	135	<5.00	103	67.8	<310.8	<5.00	8.41
				-						
MW-4	Elevation To	p of Cas	ing =	98.22						
1	11/12/2008	6.60	91.62	<2.0	<2.0	<2.0	<5.0	<11.0	<2.0	<mdl< td=""></mdl<>
2	3/31/2011	6.63	91.59	<5.00	<5.00	<5.00	<15.0	<30.00	13.7	<mdl< td=""></mdl<>
			_							
MW-5	V-5 Elevation Top of Casing = 98.34									
1	11/12/2008	7.30	91.04	3,620	65.6	344	544	4,573.6	21.7	58.1
2	3/31/2011	7.27	91.07	<5.00	<5.00	<5.00	<15.0	<30.00	5.63	<mdl< td=""></mdl<>
MW-6	Elevation To		ing =	98.13						
1	3/31/2011	5.27	92.86	<5.00	<5.00	<5.00	<15.0	<30.00	<5.00	<mdl< td=""></mdl<>
									-	
MW-7	Elevation To		ing =	97.62						
1	3/31/2011	5.09	92.53	<5.00	<5.00	<5.00	<15.0	<30.00	<5.00	<mdl< td=""></mdl<>
	 									<u> </u>
MW-8	Elevation To		ing =	97.11						
1	3/31/2011	5.08	92.03	<5.00	<5.00	<5.00	<15.0	<30.00	<5.00	<mdl< td=""></mdl<>
MW-9	Elevation To	p of Cas	ing =	97.38						
1	3/31/2011	6.51	90.87	124	7.52	195	574	<900.52	<5.00	49.1

Notes

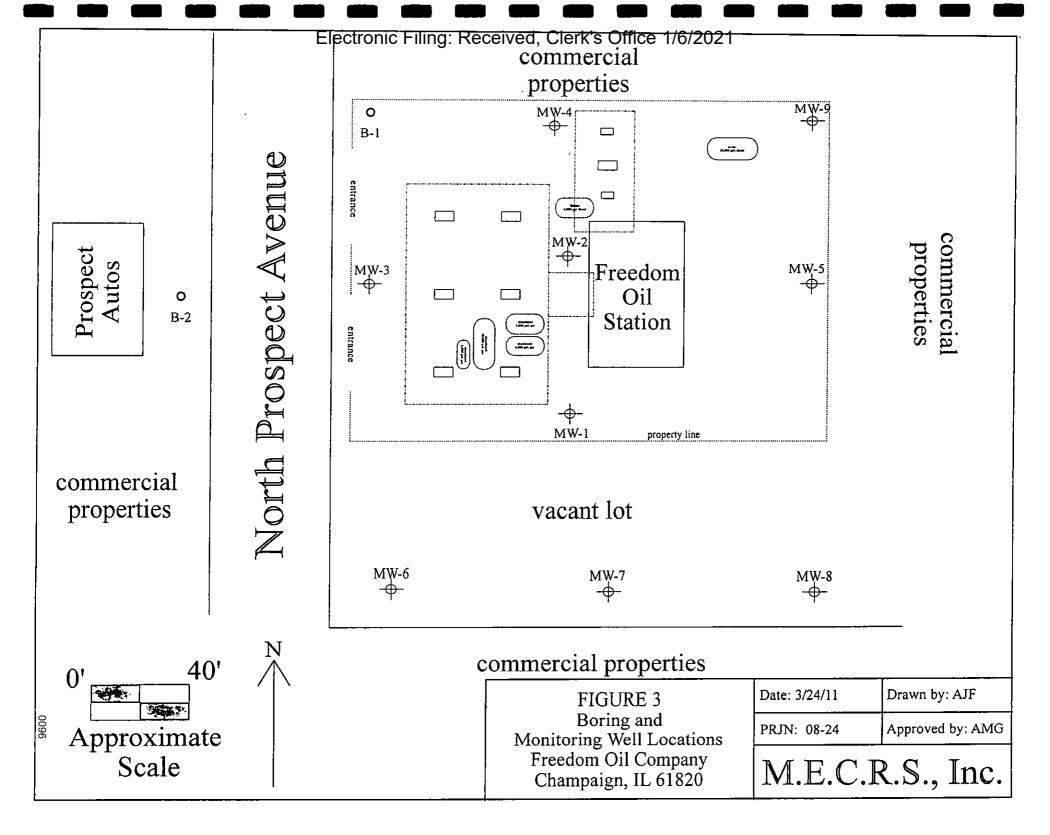

- 1. All results in parts per billion (ppb).
- 2. IEPA Generic Cleanup Objectives:

Beőzéne	Benzene Toluene		Xylenes	Total BTEX	MTBE	Napthalene	
5.0 ppb	1000 ррь	700 ppb	10,000 ppb	11,705 ppb	70 ppb	140 ppb	

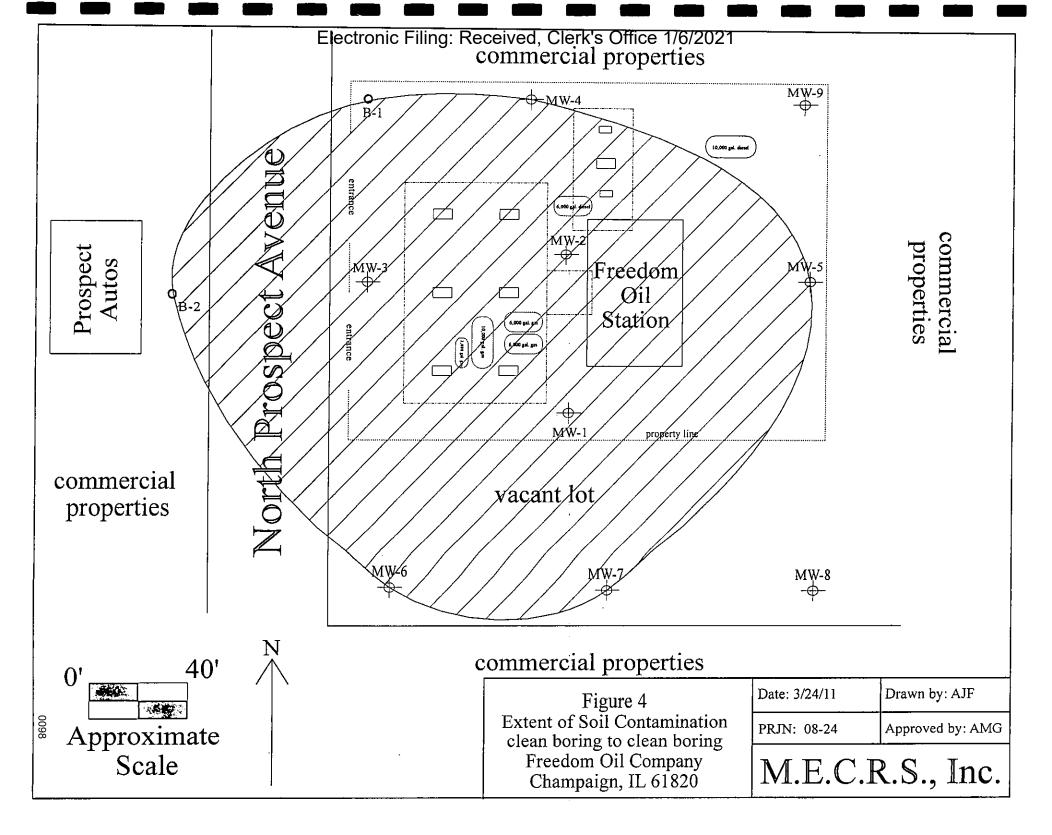
- 3. -- = No data available
- 4. DTW = Depth to Water
- 5. GWE = Groundwater Elevation referenced to datum point
- 6. All PNAs below detection limits except napthalene concentrations as noted.
- 7. ND = No PNA constituents detected.

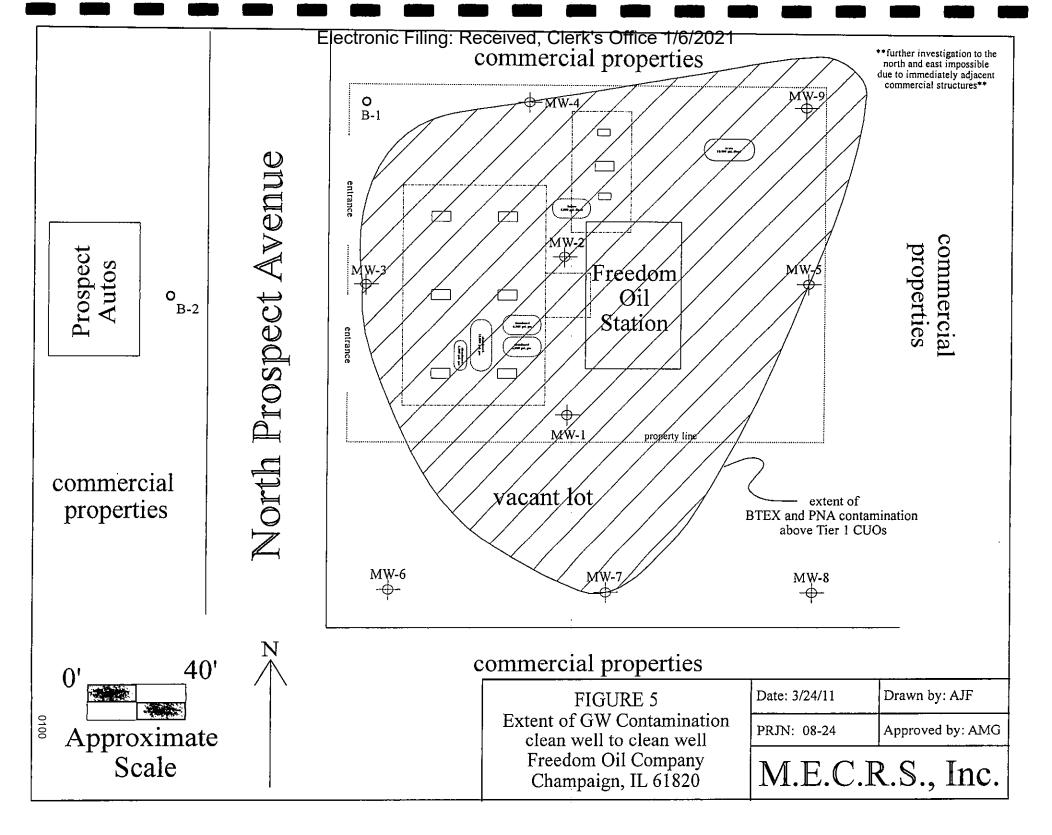

Area Map

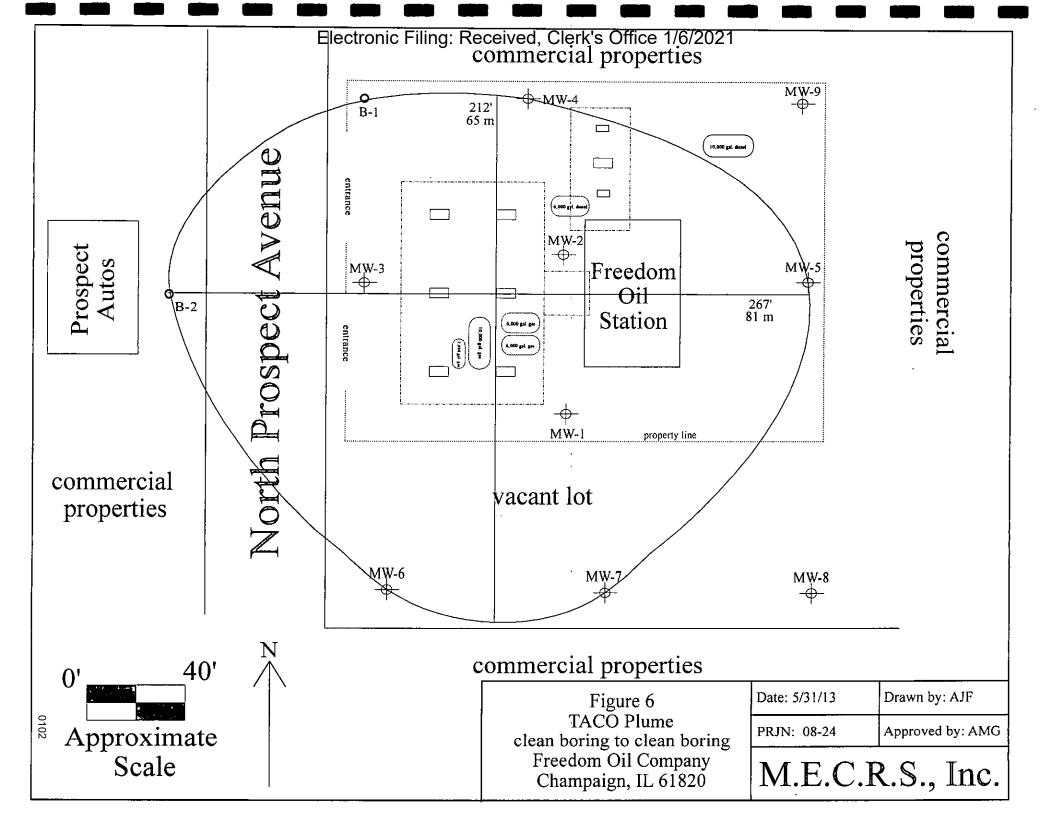
Electronic Filing: Received, Clerk's Office 1/6/2021 Area Map

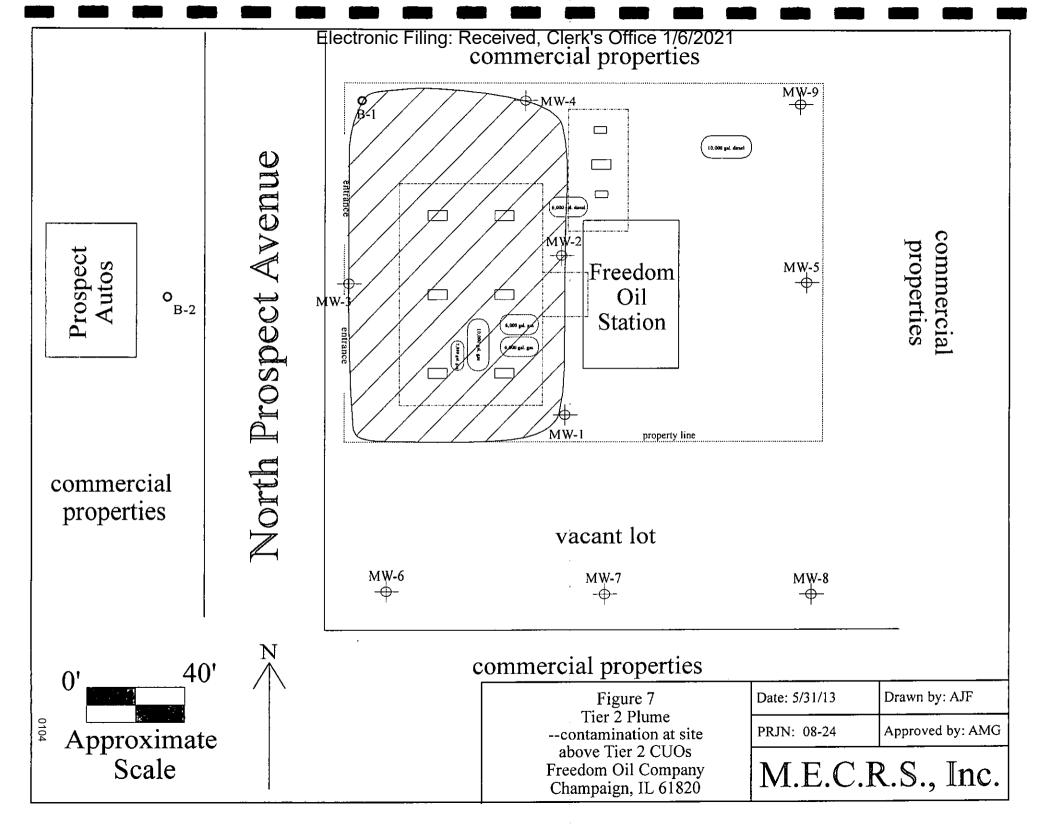


Copyright © 1988-2004 Microsoft Corp. and/or its suppliers. All rights reserved, http://www.microsoft.com/streets/
© Copyright 2003 by Geographic Data Technology, Inc. All rights reserved. © 2004 NAVTEQ. All rights reserved. This data includes information taken with permission from Canadian authorities © Her Majesty the Queen in Right of Canada.

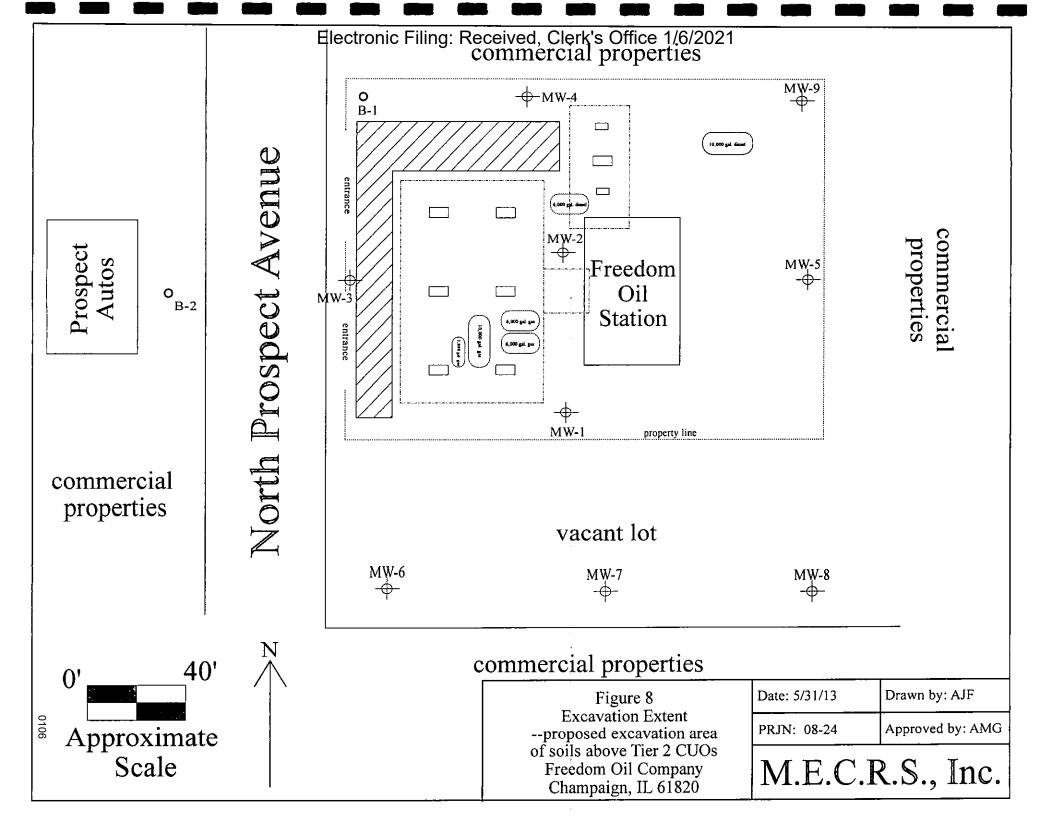

Site Map


Figure 3 Soil Boring Location Map

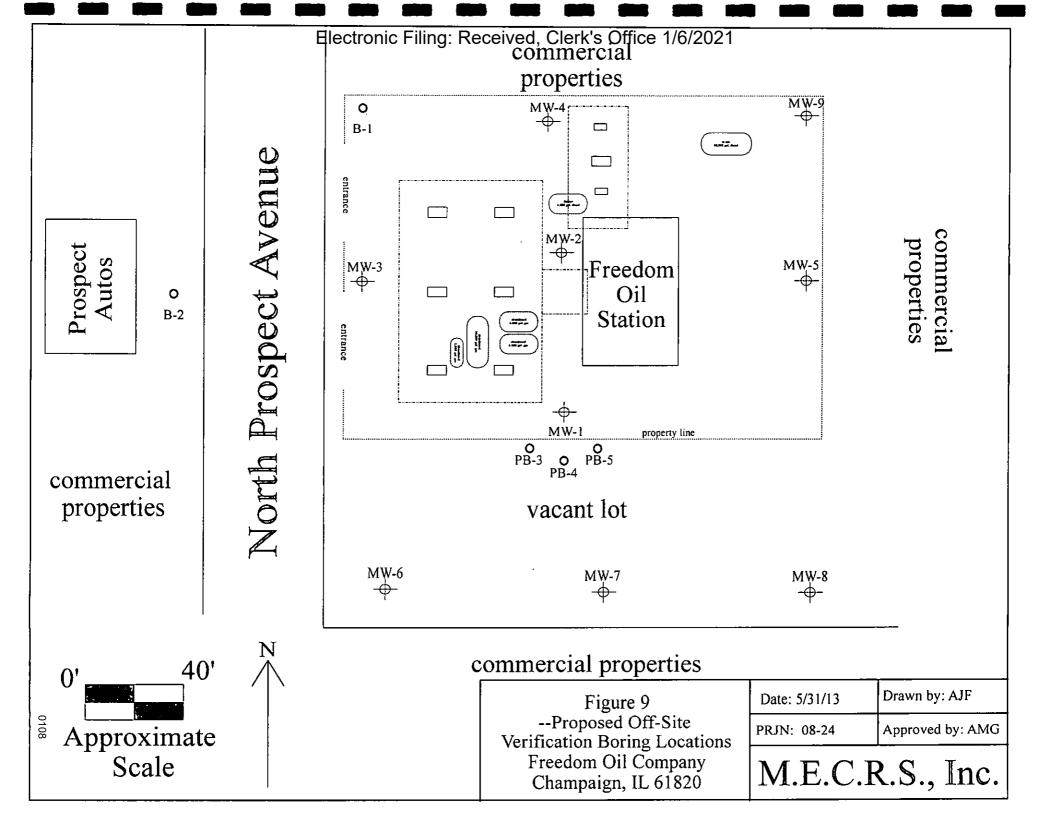

Figure 4 Estimated Extent of Soil Contamination


Estimated Extent of Groundwater Contamination

TACO Plume Measurements



Tier 2 Plume Measurements


Figure 8

Proposed Excavation Extents

Figure 9

Proposed Off-Site Boring Locations

Appendix A

Laboratory Data Reports

TELEPHONE

309-673-2131

TESTS * INVESTIGATIONS
ANALYSIS * DESIGN * EVALUATIONS
CONSULTATION * REPORTS * INSPECTIONS
ARBITRATION * EXPERT WITNESS TESTIMONY

SOILS - PORTILAND CEMENT CONCRETE BITUMINOUS CONCRETE - STEEL ASPHALT - AGGREGATES - EMULSIONS POZZOLANIC MATERIALS - LIME

CLIENT:

WHITNEY & ASSOCIATES

INCORPORATED 2406 West Nebraska Avenue PEORIA, ILLINOIS 61604-3193

TÉLEFAX

309-673-3050

GEOTECHNICAL ENGINEERING
CONSTRUCTION QUALITY CONTROL
SUBSURFACE EXPLORATIONS
ENVIRONMENTAL INVESTIGATIONS
MONITORING WELL INSTALLATIONS

MONITORING WELL INSTALLATIONS
BUILT-UP ROOF INVESTIGATIONS
WELDER CERTIFICATIONS
INSURANCE INVESTIGATIONS

W&A FILE NO.

DATE: 01-28-13

Mr. Andrew Fetterolf Midwest Environmental Consulting And Remediation Services, Inc. P. O. Box 614 Tremont, Illinois 61568-0614

PROJECT:

Freedom Oil Site Investigation Champaign, Illinois

LABORATORY TEST SUMMARY

SAMPLE NUMBER	:	Surface	Subsurface
VISUAL SOIL CLASSIFICATION	:	Black ORGANIC LEAN CLAY - OL	Light Brown And Gray-Brown Mottled Dark Brown LEAN CLAY - CL
MOIST BULK DENSITY - PCF	;	112.2	119.5
DRY BULK DENSITY - PCF	:	78.6	93.5
NATURAL MOISTURE CONTENT - %	:	42.8	27.8
SPECIFIC GRAVITY	:	2.52	2.64

Should you have any questions or comments whatsoever in regard to these test results, or if any additional information is desired, please do not hesitate to contact us at your convenience.

Respectfully submitted,

WHITNEY & ASSOCIATES

JRK:rma

Appendix B

Sampling Protocol

SOIL SAMPLING PROTOCOL

To be used when sampling L.U.S.T. site excavations for IEPA closure.

1. Sampling Methodology

- A. All sampling equipment to be used will be cleaned and decontaminated using deionized water prior to and between samples.
- B. Soil samples will be taken from excavation extents using a stainless steel trowel. The trowel will be inserted into the soil several inches so as to take a sample of undisturbed material. The sample will be immediately placed into a new, airtight, glass jar with a teflon lined lid.
- C. The sample will be allowed to sit undisturbed for a period of time sufficient for vapor equilibrium to be reached. A headspace analysis of the sample will then be conducted using a portable photoionization detector.
- D. Sampled extents showing contamination levels above 10 ppm on the PID will be continued. Sampled extents showing below 10 ppm.on the PID will be resampled for laboratory analysis.

2. Sample Storage and Transport

- A. Soil samples will be collected in new, airtight, glass jars* with teflon lined lids. Samples for analysis will be immediately cooled using a thermally insulated cooler and ice. The samples will be transported, on ice, as soon as possible, to the laboratory or to the engineering office cooler to await transport to the laboratory.
- B. No sample will be allowed to remain in the possession of the engineer or laboratory for more than two weeks prior to analysis.
- C. A chain of custody record will be kept for all samples taken for laboratory analysis.
- 3. Samples will be taken from the excavation sidewalls and floor at the following intervals.
 - A. A minimum of one sample per twenty feet for sidewall extents. When lengths of sidewall exceed twenty feet, samples will be taken at equally spaced intervals, not to exceed twenty feet.
 - B. Samples will be taken at a height relating to the projection of the lower one third of the former under ground storage tanks onto the sidewall extents. Samples will be taken at a distance relating to one-third the total excavation height from the floor if tank elevations are unknown.

- C. A minimum of one sample per 400 square feet of excavation floor. Samples at minimum will be taken from the locations representing the bottoms of the former underground storage tanks.
- D. Composited samples of excavated materials may also be taken for background reference and landfill verification.

^{*}Encore sampling system will be substituted for glass jars when required.

SOIL SAMPLING PROTOCOL For Subsurface Investigations

- 1. Sampling Methodology Split Spoon Sampling
 - A. All sampling equipment to be used will be cleaned and decontaminated using deionized water prior to and between samples.
 - B. Verification will be made that all boring equipment to include augers, split spoon samplers and associated equipment has been properly cleaned and decontaminated prior to initiating investigation.
 - C. All boring and associated samplers will be decontaminated in accordance with the following schedule.
 - 1.) Augers and center plugs will be decontaminated between borings using a high pressure washer or steam cleaner.
 - 2.) Split Spoon Samplers will be decontaminated between samples using a warm water Alconox wash and triple rinsing.
 - D. Samples representative of the interval retrieved will be removed and placed into new, glass jars with teflon lined lids*. Proper care will be taken to minimize volatilization of possible contaminants from the sample during handling.
 - E. The sample will be allowed to sit undisturbed for a period of time sufficient for vapor equilibrium to be reached. A headspace analysis of the sample will then be conducted using a portable photoionizer detector.
 - F. A log of all borings will be recorded during sampling. The logs will include data regarding soil types and depths, anomalies, odor, HNU readings, and moisture contents.
- 2. Sample Storage, Handling and Transport
 - A. Samples for analysis will be immediately cooled using a thermally insulated cooler and ice. The samples will be transported, on ice, as soon as possible, to the laboratory or to the engineering office cooler to await transport to the laboratory.
 - B. No sample will be allowed to remain in the possession of the geologist or laboratory for more than two weeks prior to analysis.
 - C. A chain of custody record will be kept for all samples taken for laboratory analysis.

^{*}Encore sampling system will be substituted for glass jars when required.

SOIL SAMPLING PROTOCOL

- 1. Sampling Methodology Shelby Tube Samples
 - A. All sampling equipment to be used will be cleaned and decontaminated using deionized water prior to and between samples.
 - B. Verification will be made that all boring equipment to include augers, shelby tube samplers and associated equipment has been properly cleaned and decontaminated prior to initiating investigation.
 - C. All boring and associated samplers will be decontaminated in accordance with the following schedule.
 - 1.) Augers and center plugs will be decontaminated between borings using a high pressure washer or steam cleaner.
 - 2.) Shelby tube samplers will be inspected prior to use. No samplers will be used showing indications of damage, corrosion or contamination. Samplers will not be reused or washed in the field.
 - D. Shelby tube samplers will be carefully removed to minimize sample disturbance and volatilization or contamination.
 - E. Plastic end caps will immediately be placed on the shelby tubes as they are removed.
- 2. Sample Storage, Handling, & Transport
 - A. Shelby tube samples will be placed in a thermally insulated cooler with ice or cooler packs (Blue Ice).
 - B. No sample will be allowed to remain in the possession of the engineer or laboratory for more than two weeks prior to analysis.
 - C. A chain of custody record will be kept for all samples taken for laboratory analysis.
 - D. No samples will be removed from the Shelby tubes except by the laboratory performing analysis.

GROUNDWATER SAMPLING PROTOCOL

To be used when sampling groundwater monitoring wells for IEPA approved investigations.

- 1. Sampling Methodology Bailer Method
 - A. Verification will be made that all sampling equipment to include bailers, buckets, chords, water level meters, have been properly decontaminated prior to sampling initiation.
 - B. All equipment will be decontaminated in accordance with the following protocol:
 - 1.) Bailers will be decontaminated between samples using Alconox wash, a 30% methanol/distilled water rinse, and a final triple rinse with distilled water.
 - 2.) Water level probes and associated equipment will be decontaminated between readings using an Alconox wash and distilled water rinse.
 - 3.) A new section of line will be used for bailing and sampling each individual well.
 - C. A record of the following will be made at the time of well sampling:
 - 1.) Depth to water from top of well casing.
 - 2.) Total well depth from top of well casing.
 - 3.) Total vertical feet of water in well.
 - 4.) Number of well volumes purged.
 - 5.) Number of gallons purged.
 - 6.) Sampling methods.
 - 7.) Sample appearance.
 - D. Wells will be purged and sampled using the following method:

The total vertical feet of water in the 2" ID monitor well will be multiplied by 0.163 gal./ft. in order to determine the total volume of water in the well. A total of three well volumes will be purged from the well. Groundwater samples will then be withdrawn via a stainless steel bailer and collected in 40 milliliter, properly labeled vials. The samples will be immediately placed on ice for temporary storage until the samples can be transported to an IEPA certified laboratory.

SOIL SAMPLING PROTOCOL

TO BE USED WHEN SAMPLING L.U.S.T. SITE EXCAVATIONS

- 1. Sampling Methodology & Decontamination Procedures
 - A. All sampling equipment to be used will be decontaminated using an alconox wash and distilled water rinse prior to and between samples.
 - B. Soil samples will be collected from excavation extents using a stainless steel trowel. The trowel will be inserted into the soil several inches so as to collect an undisturbed sample. The sample will be immediately placed into a new, airtight, glass jar with a teflon lined lid*.

Representative grab samples will be collected along excavation sidewalls at a minimum of one sample per twenty feet of sidewall. When sidewall lengths exceed twenty feet, additional sidewall representative samples will be collected. Sidewall samples will be collected from an area parallel to the lower one-third of the tank.

Representative sampling of the excavation floor will require a minimum of two grab samples to be collected in areas representing the tank invert ends. If excavation floor extents exceed 400 square feet, additional representative samples will be collected at a minimum of one sample per additional 400 square feet.

If a release has occurred along product distribution lines, representative grab samples will be collected from below areas where distribution lines were previously located. These samples will be collected at twenty foot intervals.

- 2. Sample Storage and Transport
 - A. Samples will be immediately placed on ice in an insulated cooler and chilled to 4 Celsius. Samples will be transported on ice to an IEPA certified laboratory as soon as possible.
 - B. A chain of custody record will be kept for all laboratory analyzed samples.

^{*}Encore sampling system will be substituted for glass jars when required.

SOIL SAMPLING PROTOCOL

HAND AUGER

To be used when sampling hand augered soil borings for subsurface investigations.

- 1. Sampling Methodology Hand Auger Sampling
 - A. All sampling equipment to be used will be cleaned and decontaminated using deionized water prior to and between samples.
 - B. Verification will be made that all boring equipment has been properly cleaned and decontaminated prior to initiating investigation.
 - C. All boring equipment will be decontaminated as follows:
 - Auger sample cores, attachable stems, and any additional sampling aids (e.g., knives, trowels, etc....) will be decontaminated between sampling intervals using an Alconox wash, methanol rinse, and triple distilled water rinsing.
 - D. Samples representative of the interval retrieved will be removed and placed into new, glass jars with teflon lined lids. Proper care will be taken to minimize volatilization of possible contaminants from the sample during handling.
 - E. The sample will be allowed to sit undisturbed for a period of time sufficient for vapor equilibrium to be reached. A headspace analysis of the sample will then be conducted using a portable photoionizer detector.
 - F. A log of all borings will be recorded during sampling. The logs will include data regarding soil types and depths, anomalies, odor, HNU readings, blow counts and moisture contents.
- 2. Sample Storage, Handling and Transport
 - A. Samples for analysis will be immediately cooled using a thermally insulated cooler and ice. The samples will be transported, on ice, as soon as possible, to the laboratory or to the engineering office cooler to await transport to the laboratory.
 - B. No sample will be allowed to remain in the possession of the engineer or laboratory for more than two weeks prior to analysis.
 - C. A chain of custody record will be kept for all samples taken for laboratory analysis.

Appendix C

TACO Documents

Initial Cleanup Objectives - SSL Procedure - Ground Water Protection

This report presents the initial cleanup objectives (CUO) for the constituents at the site as determined by the Soil Screening (SSL) procedure to protect ground waters. If the Mixture Rule is applicable these initial Cleanup Objectives may be modified according to the procedures set forth in 35 IAC 740 805. All cleanup objectives are in mo/kg.

	<u>Cla</u>	ss l	<u>Cla</u>	ss II
<u>ChemName</u>	<u>CUO</u>	Comments	<u>CUO</u>	<u>Comments</u>
Benzene	0.0732		0.3662	
Ethvlbenzene	47.4113		67.7305	
Naphthalene	8.8009		13.7294	
Xvlenes (total)	462.024	Capped by Csat	462.024	Capped by Csat
Total CUO Concentration	518.31		543.85	

Electronic Filing: Received, Clerk's Office 1/6/2021 Initial Cleanup Objectives - SSL Procedure - Industrial/Commercial Exposure Scenario

This report presents the initial cleanup objectives (CUO) for the constituents at the site as determined by the Soil Screening (SSL) procedure. If the Mixture Rule is applicable, these initial Cleanup Objectives may be modified according to the procedures set forth in 35 IAC 740.805. All cleanup objectives are in mg/kg.

	<u>Ingestion</u>		<u>Inha</u>	<u>lation</u>
Constituent	CUO	Comments	CUO	Comments
Benzene	197.35	Based on carcinogenicity	1.48	Inhalation of Volatiles: carcinogenic effects
Ethylbenzene	204.400.00	Based on non-carcinogenic effects	1.814.35	Inhalation of Volatiles: non-carcinogenic effects: Capped by Csat
Naphthalene	81.760.00	Based on non-carcinogenic effects	243.87	Inhalation of Volatiles: non-carcinogenic effects
Xylenes (total)	1.000.000	Based on non-carcinogenic effects: Capped by 10E6 mg/kg constraint	1.437.50	Inhalation of Volatiles: non-carcinogenic effects: Capped by Csat
otal CUO Concentrations	1,286,357.35		3,497.20	

Electronic Filing: Received, Clerk's Office 1/6/2021 Initial Cleanup Objectives - SSL Procedure - Construction Worker Exposure Scenario

This report presents the initial cleanup objectives (CUO) for the constituents at the site as determined by the Soil Screening (SSL) procedure. If the Mixture Rule is applicable these initial Cleanup Objectives may be modified according to the procedures set forth in 35 IAC 740.805. All cleanup objectives are in mg/kg.

~ .	Inge	<u>stion</u>	<u>Inhalation</u>	
Constituent	CUO	Comments	CUO	Comments
Benzene	4.282.81	Based on carcinogenicity	2.08	Inhalation of Volatiles: carcinogenic effects
Ethylbenzene	20.404.51	Based on non-carcinogenic effects	51.25	Inhalation of Volatiles: non-carcinogenic effects
Naphthalene	8.161.81	Based on non-carcinogenic effects	1.58	Inhalation of Volatiles: non-carcinogenic effects
Xylenes (total)	408.090.29	Based on non-carcinogenic effects	20.35	Inhalation of Volatiles: non-carcinogenic effects
Total CUO Concentrations	440,939.42		75.26	-

Electronic Filing: Received, Clerk's Office 1/6/2021 Datasheet SSL-I: Ingestion of Carcinogenic Contaminants

Datasheet SSL-I is to be used to propose soil cleanup objectives for the ingestion of carcinogens exposure route calculated by equations in Appendix C, Table A of TACO: Equation S2 (residential scenario) and Equation S3 (industrial/commercial and construction worker scenarios).

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted; one for the industrial/commercial scenario and one for the construction worker scenario.

Land Use Scenario: Industrial/Commercial

Engineered Barrier	YES	NO	Institutional Control	YES	NO
TR (Unitless)	0.000001		BW (kg)		70
ATc (yr)	70		ED (yr)	25	
EF (d/yr)	250		IRsoil (mg/d)	50	
IFsoil-adj (mg-yr/kg-d)	Not App	licable	SFo (1/mg/kg-d)	See I	Below

Toxicological Properties

Chemical Name	SFo 1/(mg/kg-d)	Soil Cleanup Objective (mg/kg)
Benzene	0.0290	197.352
Ethylbenzene	0.0000	NC
Naphthalene	0.0000	NC
Xylenes (total)	0.0000	NC

Electronic Filing: Received, Clerk's Office 1/6/2021 Datasheet SSL-II: Ingestion of Noncarcinogenic Contaminants

Datasheet SSL-I is to be used to propose soil cleanup objectives for the ingestion of noncarcinogens exposure route calculated by equations in Appendix C, Table A of TACO: Equation S1 (residential, industrial/commercial and construction worker scenarios).

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted, one for the industrial/commercial scenario and one for the construction worker scenario.

Land Use Scenario: Industrial/Commercial

Engineered Barrier	YES	NO	Institutional Control	YES	NO
THQ (Unitless)		1	ED (yr)		25
BW (kg)		70	IRsoil (mg/d)		50
AT (yr)		25	RfDo (1/mg/kg-d)	See B	elow
EF (d/yr)		250			

Toxicological Properties

Chemical Name	RfDo (mg/kg-d)	Soil Cleanup Objective (mg/kg)
Benzene	0.0000	NC
Ethylbenzene	0.1000	204,400.003
Naphthalene	0.0400	81,759.998
Xylenes (total)	2.0000	4,088,000.000

Electronic Filing: Received, Clerk's Office 1/6/2021 Datasheet SSL-III(a): Inhalation of Carcinogenic Volatile Contaminants for Commercial/Industrial Scenario

Datasheet SSL-III(a) is to be used to propose soil cleanup objectives for the inhalation of volatile carcinogens exposure route calculated by the equation in Appendix C, Table A of TACO: Equation S6 (residential and commercial/industrial scenarios). Since the values(s) listed in Datasheet SSL-VI are used in this evaluation, this datasheet must also be submitted.

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted. Therefore, Datasheets SSL-III(a) and SSL-III(b) must be submitted.

Land Use Scenario: Commercial/Industrial

Engineered Barrier	YES	NO	Institutional Control	YES	NO	
TR (Unitless)	0.000001		EF (d/yr)		250	
ATc (yr)	70		ED (yr)		25	
URF 1/(μg/m³)*	See Below		VF (m³/kg)**	See E	Below	

^{*} Toxicological Properties: See Datasheet D

^{**} VF values reported on Datasheet SSL-VI(a)

Chemical Name	URF 1/(µg/m³)	VF (m³/kg)	Soil Cleanup Objective (mg/kg)
Benzene	0.0000078	2,824.73	1.480
Ethylbenzene		5,425.84	NC
Naphthalene		55,678.68	NC
Xylenes (total)		5,387.49	NC

Datasheet SSL-IV(a): Inhalation of Noncarcinogenic Volatile Contaminants for Residential and Commercial/Industrial Scenarios

Datasheet SSL-IV(a) is to be used to propose soil cleanup objectives for the inhalation of volatile carcinogens exposure route calculated by the equation in Appendix C, Table A of TACO: Equation S4 (residential and commercial/industrial scenarios). Since the value(s) listed in Datasheet SSL-VI are used in this evaluation, this datasheet must also be submitted.

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets SSL-IV(a) and SSL-IV(b) must be submitted. For those chemicals liquid at ambient temperature (30°C), Csat shall be the soil cleanup level if less than the migration to groundwater objective.

Land Use Scenario: Industrial/Commercial

Engineered Barrier	YES	NO	Institutional Control	YES	NO	
THQ (Unitless)		1	ED (yr)		25	
AT (yr)	25		RfC (mg/m³)*	See Be	See Below	
EF (d/yr)		250	VF (m³/kg)**	See B	elow	

^{*} Toxicological Properties: See Datasheet D

^{**} VF values reported on Datasheet SSL-VI(a)

Chemical Name	RfC (mg/m³)	RfDiC (mg/kg-d)	VF (m³/kg)	Soil Cleanup Objectives (mg/kg)
Benzene			2,824.73	3,308.342
Ethylbenzene	1.000000	0.290000	5,425.84	1,814.345
Naphthalene	0.003000	0.000860	55,678.68	243.873
Xylenes (total)		0.030000	5,387.49	1,437.500

Electronic Filing: Received, Clerk's Office 1/6/2021 Datasheet SSL-II: Ingestion of Noncarcinogenic Contaminants

Datasheet SSL-I is to be used to propose soil cleanup objectives for the ingestion of noncarcinogens exposure route calculated by equations in Appendix C, Table A of TACO: Equation S1 (residential, industrial/commercial and construction worker scenarios).

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted, one for the industrial/commercial scenario and one for the construction worker scenario.

Land Use Scenario: Construction Worker

Engineered Barrier	YES	NO Institutional Control		YES	NO
THQ (Unitless)	1		ED (yr)	1	
BW (kg)	70		IRsoil (mg/d)	480	
AT (yr)	0.115		RfDo (1/mg/kg-d)	See B	Below
EF (d/yr)		30			

Toxicological Properties

Chemical Name	RfDo (mg/kg-d)	Soil Cleanup Objective (mg/kg)
Benzene	0.0000	NC
Ethylbenzene	0.1000	20,404.515
Naphthalene	0.0400	8,161.806
Xylenes (total)	2.0000	408,090.285

Datasheet SSL-I: Ingestion of Carcinogenic Contaminants

Datasheet SSL-I is to be used to propose soil cleanup objectives for the ingestion of carcinogens exposure route calculated by equations in Appendix C, Table A of TACO: Equation S2 (residential scenario) and Equation S3 (industrial/commercial and construction worker scenarios).

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted; one for the industrial/commercial scenario and one for the construction worker scenario.

Land Use Scenario: Construction Worker

Engineered Barrier	YES	NO	NO Institutional Control		NO
TR (Unitless)	0.000001		BW (kg)	70	
ATc (yr)	70		ED (yr)	1	
EF (d/yr)	30		IRsoil (mg/d)	480	
IFsoil-adj (mg-yr/kg-d)	Not Applicable		SFo (1/mg/kg-d)	See Below	

Toxicological Properties

Chemical Name	SFo 1/(mg/kg-d)	Soil Cleanup Objective (mg/kg)
Benzene	0.0290	4,282.807
Ethylbenzene	0.0000	NC
Naphthalene	0.0000	NC
Xylenes (total)	0.0000	NC

Electronic Filing: Received, Clerk's Office 1/6/2021 Datasheet SSL-III(b): Inhalation of Carcinogenic Volatile Contaminants for Construction Worker Scenario

Datasheet SSL-III(a) is to be used to propose soil cleanup objectives for the inhalation of volatile carcinogens exposure route calculated by the equation in Appendix C, Table A of TACO: Equation S6 (residential and commercial/industrial scenarios). Since the values(s) listed in Datasheet SSL-VI are used in this evaluation, this datasheet must also be submitted.

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets must be submitted. Therefore, Datasheets SSL-III(a) and SSL-III(b) must be submitted.

Land Use Scenario: Construction Worker

Engineered Barrier	YES NO		Institutional Control	YES	NO
TR (Unitless)	0.000001		EF (d/yr)	30	
ATc (yr)	70		ED (yr)		1
URF 1/(μg/m³)*	See Below		VF (m³/kg)**	See I	Below

^{*} Toxicological Properties: See Datasheet D

^{**} VF values reported on Datasheet SSL-VI(a)

Chemical Name	URF 1/(μg/m³)	VF (m³/kg)	Soil Cleanup Objective (mg/kg)
Benzene	0.000078	19.07	2.082
Ethylbenzene		36.63	NC
Naphthalene		375.86	NC
Xylenes (total)		36.37	NC

Datasheet SSL-IV(b): Inhalation of Noncarcinogenic Volatile Contaminants for Residential and Commercial/Industrial Scenarios

Datasheet SSL-IV(a) is to be used to propose soil cleanup objectives for the inhalation of volatile carcinogens exposure route calculated by the equation in Appendix C, Table A of TACO: Equation S4 (residential and commercial/industrial scenarios). Since the value(s) listed in Datasheet SSL-VI are used in this evaluation, this datasheet must also be submitted.

For industrial/commercial properties, soil cleanup objectives for both the industrial/commercial scenario and the construction worker scenario must be calculated. Therefore, two datasheets SSL-IV(a) and SSL-IV(b) must be submitted. For those chemicals liquid at ambient temperature (30°C), Csat shall be the soil cleanup level if less than the migration to groundwater objective.

Land Use Scenario: Construction Worker

Engineered Barrier	YES NO		Institutional Control	YES	NO
THQ (Unitless)	1		ED (yr)	1	
AT (yr)	0.115		RfC (mg/m³)*	See Be	low
EF (d/yr)	30		VF (m³/kg)**	See Be	low

^{*} Toxicological Properties: See Datasheet D

^{**} VF values reported on Datasheet SSL-VI(a)

Chemical Name	RfC_sc (mg/m³)	RfDiSC (mg/kg-d)	VF (m³/kg)	Soil Cleanup Objectives (mg/kg)
Benzene			19.07	3,308.342
Ethylbenzene	1.00000	0.29000	36.63	51.248
Naphthalene	0.00300	0.00086	375.86	1.578
Xylenes (total)	0.40000	0.03000	36.37	20.354

Datasheet SSL - V(b). Migration to Groundwater - Class 2

Datasheet SSL-V is to be used to propose soil cleanup objectives for the migration to groundwater exposure route of carcinogens calculated by the equation in Appendix C, Table A or TACO: Equation S17 (residential, industrial/commercial and construction worker scenarios). Equations S20, S21, and S22 may also be necessary under some circumstances. Since values listed in Datasheet SSL-VI are used in this evaluation, this datasheet must also be submitted.

Area(s)/Locations(s) at the site, if applicable:	

Land Use Scenario: ALL

Engineered Barriers Institutional Control	YES YES	NO NO	Site-Specific DF* (unitless)		Physical Soil Parameters**		
Cw (mg/L)	See belo		K (m/yr)	ş-	θw (unitless)	0.30	
Kd (L/kg)***	See	below	i (m/m)		θa (unitless)	0.13	
H' (unitless)****	See belo	w	d (m)		ρs (g/cm³)	2.64	
Koc (L/kg)****	See belo	w	I (m/yr)		ρ _b (g/cm³)	1.50	
DF (unitless)	20.0		L (m)		foc (unitless)	0.009	
GWobj (mg/L)	See belo	w	da (m)	*			
TR (unitless)	0.00000	11	ATc (yr)		SFo [1/(mg/kg-d)]*****	See below	

^{*} If a site-specific dilution factor (DF) value is used, then the input parameters used to calculate the DF must be recorded. If the default of 20 is used, please leave this column blank.

**** Chemical Properties (see Datasheet C)

***** Toxicological Properties (see Datasheet D)

Chemical Name	Cw (mg/L)	Kd (L/kg)	H' (unitless)	Koc (L/kg)	GWobj (mg/L)	SFo [1/(mg/kg-d)]	Migration to Groundwater or Csat* (mg/kg)
Benzene	0.500	5.12E-001	2.28E-001	5.89E+001	0.02500	0.029000	0.3662

Soil Cleanup Objective Based .

^{**} Physical Soil Parameters (see Datasheet A)

^{***} Kd value reported on Datasheet SSL-VI

Datasheet SSL-VI(a2): Volatilization Factor for the Industrial/Commercial Exposure Scenario

Datasheet SSL-VI(a2) is to be used to propose the volatilization factor(s) for the SSL equations. Equations S8, S10, S16, S17, and S18 are used in calculating VF values.

Land Use Scenario: Industrial/Commercial

Engineered Barrier	YES	NO	Physical Soil Parameters	
Institutional Control	YES	NO	Θa (unitless) *	0.35
Q/Cvf (g/m ² -s))/(kg/m ³)	85.8	31	Θw (unitless) *	0.15
α (cm²/sec)	No Longer Used		ρ _b (g/cm³)	1.26
T (s)	790,000,000		η (unitless)	0.50
DA (cm²/sec)	See Below		foc (unitless) '	0.029
Dw (cm²/sec)	See Belo	ow		
Di (cm²/sec) **	See Bele	ow		
H' (unitless) **	See Below			
Kd (cm³/g)	See Below]	
Koc (cm³/g) **	See Bel	w		

^{*} Physical Soil Parameters (see Datasheet A)

^{**} Chemical Properties (see Datasheet C)

Chemical Name	DA (cm²/sec)	Dw (cm²/sec)	Di (cm²/sec)	H' (unitless)	Kd (cm³/g)	Koc (L/kg)	VF (m³/kg)
Benzene	1.02E-003	9.80E-006	0.08800	2,28E-00	1.71	5.89E+001	2,824.73
Ethylbenzene	2.17E-004	7.80E-006	0.07500	3.23E-00	10.53	3.63E+002	5,425.84
Naphthalene	1.94E-006	7.50E-006	0.05900	1.98E-002	58.00	2.00E+003	55,678.68
Xylenes (total)	2.24E-004	9.34E-006	0.07200	2.50E-001	7.54	2.60E+002	5,387.49

Datasheet SSL-VI(b). Volatilization Factor for Construction Worker Scenario

Datasheet SSL-VI(b) is to be used to propose the volatilization factor(s) (VF') for the SSL equations. Since the values listed in Datasheet SSL-VI(a) are used in this evaluation, this datasheet must also be submitted.

Areas(s)/Location(s) at the site, if applicable:

Land Use Scenario: Construction Worker

Engineered Barrier

YES

NO

Institutional Control

YES

NO

Chemical Name	VF (m³/kg)	VF' (m³/kg)
Benzene	190.68	19.07
Ethylbenzene	366.27	36.63
Naphthalene	3,758.60	375.86
Xylenes (total)	363.68	36.37

Datasheet A: Physical Soil Parameters for the SSL Equations

Area(s)/Location(s) at the site, if applicable:

Predominant Soil Type (e.g., clay, sand, silty clay, etc.):

Surface (top 1 meter) or Subsurface (below 1 meter):

Site-specifc values [i.e., field measurements (F=) or calculated values using the SSL equation (Sxx=)] ar to be reported if they are used in developing the Tier 2 cleanup objectives. Acceptable procedures for obtaining these values are identified in Appendix C, Table F of TACO.

Parameter	Soil Type	Default Value	Units	Field Measurement or Calculated	Value
a la	Surface and/or				
ρb (Soil Bulk Density)	Subsurface soils	1.5	kg/L	F =	
(Soil Bulk Delisity)	Gravel	2.0	Kar	'-	
	Sand	1:8		Surface	1.26
	Silt	1.6		Subsurface	1.50
	Clay	1.7			
ps	Surface and/or			Surface	2.52
(Soil Particle Density)	Subsurface	2.65	g/cm³	Subsurface	2.64
w	Surface and/or				
(Moisture Content)	Subsurface Soils	0.1	gwater/gsoil		
	Surface Soils	0.1	(unitless)		ŀ
	Subsurface Soils	0.2			
foc					
(Organic Carbon Content)	Surface Soils	0.006	g/g	Surface	0.029
	Subsurface Soils	0.002	(unitless)	Subsurface	0.009
η	Surface and/or				
(Total Soil Porosity)	Subsurface Soils	0.43 L	pore/Lsoil		
	Gravel	0.25	(unitless)		
	Sand	0.32] s	urface	0.50
	Silt	0.40]	ubsurface	0.43
	Clay	0.36			
θа					•
(Air-filled Soil Porosity)	Surface Soils	0.28 L	air/Lsoil		1
	Subsurface Soils	0.13	unitless)		
	Gravel	0.05			
	Sand	0.14		urface	0.35
,	Silt	0.24	S	ubsurface	0.13
	Clay	0.19			
θw					<u> </u>

Datasheet A: Physical Soil Parameters for the SSL Equations

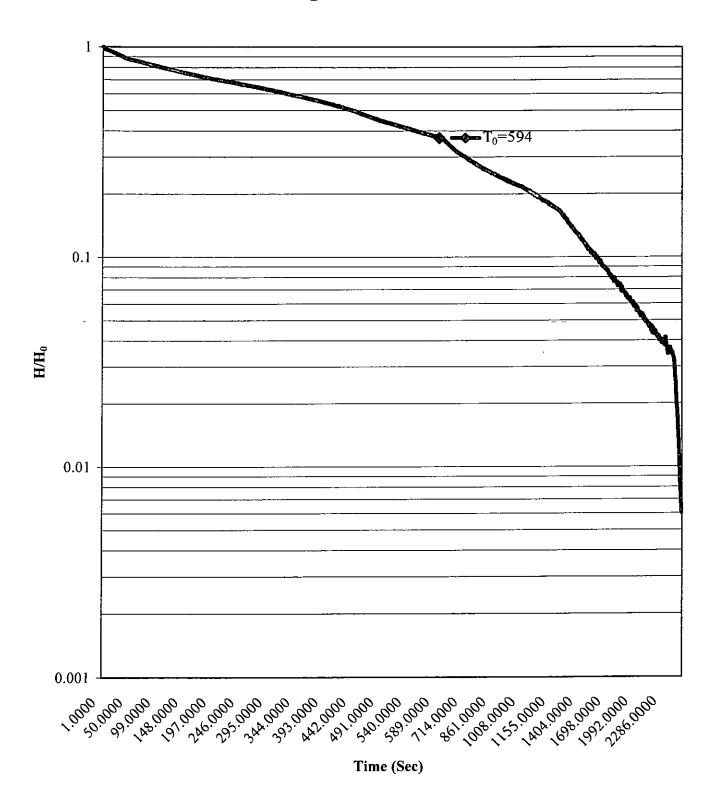
(Water-filled Soil Porosity)	Surface	0.15	Lwater/Lsoil		
	Subsurface Soils	0.30	(unitless)		
	Gravel	0.20		Surface	0.15
	Sand	0.18		Subsurface	0.30
	Silt	0.16			
-	Clay	0.17			

Datasheet C: Chemical Properties

	Solubility in Water (S)	Diffusivity in Air (Di)	Diffusivity in Water (Dw)	Henry's Law Constant	Organic Carbon Partition Coefficient	First Order Decay Constant
Chemical	(mg/L)	(cm ² /s)	(cm²/s)	(H' @ 25°C)	(Koc - L/kg)	(λ - 1/day)
Benzene	1.75E+003	8.80E-002	9.80E-006	2.28E-001	5.89E÷001	0.000900
Ethylbenzene	1.69E+002	7.50E-002	7.80E-006	3.23E-001	3.63E+002	0.003000
Naphthalene	3.10E+001	5.90E-002	7.50E-006	1.98E-002	2.00E+003	0.002700
Xylenes (total)	1.86E+002	7.20E-002	9.34E-006	2.50E-001	2.60E+002	0.001900

Datasheet D: Toxicological Properties

	Car	rcinogenicity Info	ormation	Non-Carcinogenicity Information					
Chemical	Unit Risk Factor 1/(mg/m³)	Inhalation Slope Factor 1/(mg/kg•day)	Oral Slope Factor 1/(mg/kg•day)	Chronic Oral RfD (mg/kg•day)	Subchronic Oral RfD (mg/kg•day)	Chronic Inhalation RfD (mg/kg•day)	Subchronic Inhalation RfD (mg/kg•day)	Chronic RfC (mg/m³)	Subchronic RfC (mg/m³)
Benzene	0.0000078	0.029	0.029						
Ethylbenzene			0.000	0.100	0.100	0.29000	0.29000	1.000000	1.0000
Naphthalene			0.000	0.040	0.040	0.00086	0.00086	0.003000	0.0030
Xylenes (total)			0.000	2.000	2.000	0.03000	0.03000		0.4000


Datasheet E: Soil Saturation Limits

			Constituent P	roperties		Saturation Limits		
Chemical	Solubility mg/L	Kd (Surface) cm³/g	Kd (Subsurface) cm³/g	Henry's Law Constant (H') (dimensionless)	Organic Carbon Partition Coefficient (Koc)	Csat (Surface Soils) mg/kg	Csat (Subsurface Soils) mg/kg	
Benzene	1.75E+003	1.708	0.512	2.28E-001	5.89E+001	3,308.34	1,281.87	
Ethylbenzene	1.69E+002	10.527	3.158	3.23E-001	3.63E+002	1,814.35	572.32	
Naphthalene	3.10E+001	58.000	17.400	1.98E-002	2.00E+003	1,801.86	545.65	
Xylenes (total)	1.86E+002	7.540	2.262	2.50E-001	2.60E+002	1,437.50	462.02	

01/30/13

Page 1 of 1

Freedom Oil Company - Champaign Slug Test Results

Hydraulic Conductivity/Groundwater Yield Calculations

Freedom Oil Company Champaign, Illinois

Hydraulic Conductivity Calculations using:

$$k = \frac{r^2 \ln(L/R)}{2LT_0}$$

Where: k = Hydraulic Conductivity

L = filter pack length (in) L= 12ft = 144 in

R = filter pack radius (in)

r = riser radius (in) $T_0 = Basic Time Lag (sec)$ R= 4 in

r = 1 in $T_0 = 594 sec$

SLUG TEST CALCULATIONS

$$k_2 = \frac{(1)^2 \ln (144/4)}{2*144*594}$$

= 2.09E-05 in/sec

= 5.32E-05 cm/sec

Average Hydraulic Conductivity = 5.32E-05 cm/sec = 4.60 cm/d

Groundwater yield calculations using Darcy's Law:

$$Q = k i A$$

Where: Q = Discharge (gallons per day)

k = hydraulic conductivity (average):

IN-SITU = 5.32E-05 cm/sec = 0.15 ft/day

i = hydraulic gradient (set as 1 -- per IEPA methodology)

A = circumference of borehole X length of well screen (IEPA methodology) = 30.48 ft^2 FROM SLUG TEST:

 $Q = 4.60 \text{ ft}^3/\text{day}$

Q = 34.39 gallons per day

Elapsed Time (sec)	Elapsed Time (Min)	INPUT I	Н	H/H ₀
1	0.016666667	14.866	-3.159	1
2	0.033333333	14.874	-3.151	0.997467553
3	0.05	14.907	-3.118	0.987021209
4	0.066666667	14.936	-3.089	0.977841089
5	0.083333333	14.944	-3.081	0.975308642
6	0.1	14.95	-3.075	0.973409307
7	0.116666667	14.956	-3.069	0.971509972
8	0.133333333	14.964	-3.061	0.968977525
9	0.15	14.969	-3.056	0.967394745
10	0.166666667	14.975	-3.05	0.96549541
11	0.183333333	14.979	-3.046	0.964229186
12	0.2	14.987	-3.038	0.961696739
13	0.216666667	14.996	-3.029	0.958847737
14	0.233333333	15.004	-3.021	0.95631529
15	0.25	15.011	-3.014	0.954099399
16	0.266666667	15.017	-3.008	0.952200063
17	0.283333333	15.029	-2.996	0.948401393
18	0.3	15.036	-2.989	0.946185502
19	0.316666667	15.044	-2.981	0.943653055
20	0.333333333	15.053	-2.972	0.940804052
21	0.35	15.067	-2.958	0.93637227
22	0.366666667	15.07	-2.955	0.935422602
23	0.383333333	15.078	-2.947	0.932890155
24	0.4	15.083	-2.942	0.931307376
25	0.416666667	15.094	-2.931	0.927825261
26	0.433333333	15.1	-2.925	0.925925926
27	0.45	15.11	-2.915	0.922760367
28	0.466666667	15.117	-2.908	0.920544476
29	0.483333333	15.123	-2.902	0.918645141
30	0.5	15.13	-2.895	0.91642925
31	0.516666667	15.14	-2.885	0.913263691
32	0.533333333	15.148	-2.877	0.910731244
33	0.55	15.156	-2.869	0.908198797
34	0.566666667	15.161	-2.864	0.906616018
35	0.583333333	15.171	-2.854	0.903450459
36	0.6	15.179	-2.846	0.900918012
37	0.616666667	15.194	-2.831	0.896169674
38	0.633333333	15.198	-2.827	0.89490345
39	0.65	15.212	-2.813	0.890471668
40	0.666666667	15.219	-2.806	0.888255777
41	0.683333333	15.227	-2.798	0.88572333
42	0.7	15.234	-2.791	0.883507439
43	0.716666667	15.237	-2.788	0.882557771
44	0.733333333	15.245	-2.78	0.880025324
45	0.75	15.247_	-2.778	0.879392213
46	0.766666667	15.255	-2.77	0.876859766
47	0.783333333	15.265	-2.76	0.873694207
48	0.8	15.265	-2.76	0.873694207
49	0.816666667	15.271	<u>-2.754</u>	0.871794872

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
50	0.833333333	15.277	-2.748	0.869895537
51	0.85	15.281	-2.744	0.868629313
52	0.86666667	15.282	-2.743	0.868312757
53	0.883333333	15.28	-2.745	0.868945869
54	0.9	15.289	-2.736	0.866096866
55	0.916666667	15.289	-2.736	0.866096866
56	0.933333333	15.298	-2.727	0.863247863
57	0.95	15.3	-2.725	0.862614752
58	0.96666667	15.302	-2.723	0.86198164
59	0.983333333	15.309	-2.716	0.859765749
60	1	15.312	-2.713	0.858816081
61	1.016666667	15.316	-2.709	0.857549858
62	1.033333333	15.316	-2.709	0.857549858
63	1.05	15.324	-2.701	0.855017411
64	1.066666667	15.335	-2.69	0.851535296
65	1.083333333	15.332	-2.693	0.852484964
66	1.1	15.333	-2.692	0.852168408
67	1.116666667	15.341	-2.684	0.849635961
68	1.133333333	15.345	-2.68	0.848369737
69	1.15	15.348	-2.677	0.84742007
70	1.166666667	15.354	-2.671	0.845520734
71	1.183333333	15.354	-2.671	0.845520734
72	1.2	15.362	-2.663	0.842988287
73	1.216666667	15.366	-2.659	0.841722064
74	1.233333333	15.37	-2.655	0.84045584
75	1.25	15.373	-2.652	0.839506173
76	1.266666667	15.382	-2.643	0.83665717
77	1.283333333	15.385	-2.64	0.835707502
78	1.3	15.389	-2.636	0.834441279
79	1.316666667	15.392	-2.633	0.833491611
80	1.333333333	15.398	-2.627	0.831592276
81	1.35	15.4	-2.625	0.830959164
82	1.366666667	15.406	-2.619	0.829059829
83	1.383333333	15.41	-2.615	0.827793606
84	1.4	15.415	-2.61	0.826210826
85	1.416666667	15.421	-2.604	0.824311491
86	1.433333333	15.419	-2.606	0.824944603
87	1.45	15.432	-2.593	0.820829376
88	1.466666667	15.429	-2.596	0.821779044
89	1.483333333	15.435	-2.59	0.819879709
90	1.5	15.436	-2.589	0.819563153
91	1.516666667	15.435	-2.59	0.819879709
92	1.533333333	15.444	-2.581	0.817030706
93	1.55	15.444	-2.581	0.817030706
94	1.566666667	15.455	-2.57	0.813548591
95	1.583333333	15.455	-2.57_	0.813548591
96	1.6	15.465	-2.56	0.810383033
97	1.616666667	15.46	-2.565	0.811965812

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
••••				
98	1.633333333	15.463	-2.562	0.811016144
99	1.65	15.468	-2.557	0.809433365
100	1.666666667	15.477	-2.548	0.806584362
101	1.683333333	15.481	-2.544	0.805318139
102	1.7	15.478	-2.547	0.806267806
103	1.716666667	15.492	-2.533	0.801836024
104	1.733333333	15.489	-2.536	0.802785692
105	1.75	15.494	-2.531	0.801202912
106	1.766666667	15.5	-2.525_	0.799303577
107	1.783333333	15.503	-2.522	0.798353909
108	1.8	15.506	-2.519	0.797404242
109	1.816666667	15.516	- 2.509	0.794238683
110	1.833333333	15.517	-2.508	0.793922127
111	1.85	15.514	<u>-2.511</u>	0.794871795
112	1.866666667	15.521	-2.504	0.792655904
113	1.883333333	15.524	-2.501	0.791706236
114	1.9	15.528	-2.497	0.790440013
115	1.916666667	15.53	-2.495	0.789806901
116	1.933333333	15.53	-2.495	0.789806901
117	1.95	15.534	-2.491	0.788540677
118	1.966666667	15.54	-2.485	0.786641342
· 119	1.983333333	15.545	-2.48	0.785058563
120	2	15.551	-2.474	0.783159228
121	2.016666667	15.556	-2.469	0.781576448
122	2.033333333	15.557	-2.468	0.781259892
123	2.05	15.555	-2.47	0.781893004
124	2.066666667	15.565	-2.46	0.778727445
125	2.083333333	15.563	-2.462	0.779360557 0.77841089
126	2.1	15.566	-2.459 -2.451	0.775878443
127	2.116666667	15.574	-2.451 -2.45	0.775561887
128 129	2.133333333 2.15	15.575 15.577	-2.45 -2.448	0.774928775
130	2.166666667	15.588	-2.446	0.77144666
131	2.183333333	15.566	-2.437 -2.435	0.770813549
132	2.10333333	15.591	-2.434	0.770496993
133	2.216666667	15.596	-2.429	0.768914213
134	2.233333333	15.603	-2.422	0.766698322
135	2.25	15.602	-2.423	0.767014878
136	2.266666667	15.607	-2.418	0.765432099
137	2.283333333	15.611	-2.414	0.764165875
138	2.3	15.61	-2.415	0.764482431
139	2.316666667	15.622	-2.403	0.760683761
140	2.333333333	15.622	-2.403	0.760683761
141	2.35	15.622	-2.403	0.760683761
142	2.366666667	15.628	-2.397	0.758784425
143	2.383333333	15.635	-2.39	0.756568534
144	2.4	15.633	-2.392	0.757201646
145	2.416666667	15.638	-2.387	0.755618867
		. 5.000		

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
146	2.433333333	15.639	-2.386	0.755302311
147	2.45	15.648	-2.377	0.752453308
148	2.466666667	15.648	-2.377	0.752453308
149	2.483333333	15.652	-2.373	0.751187085
150	2.5	15.657	-2.368	0.749604305
151	2.516666667	15.655	-2.37	0.750237417
152	2.533333333	15.661	-2.364	0.748338082
153	2.55	15.659	-2.366	0.748971193
154	2.566666667	15.667	-2.358	0.746438746
155	2.583333333	15.673	-2.352	0.744539411
156	2.6	15.672	-2.353	0.744855967
157	2.616666667	15.679	-2.346	0.742640076
158	2.633333333	15.677	-2.348	0.743273188
159	2.65	15.683	-2.342	0.741373852
160	2.666666667	15.684	-2.341	0.741057297
161	2.683333333	15.686	-2.339	0.740424185
162	2.7	15.6 9 2	-2.333	0.73852485
163	2.716666667	15.7	-2.325	0.735992403
164	2.733333333	15.701	-2.324	0.735675847
165	2.75	15.704	-2.321	0.734726179
166	2.766666667	15.7	-2.325	0.735992403
167	2.783333333	15.708_	-2.317	0.733459956
168	2.8	15.719	-2.306	0.729977841
169	2.816666667	15.72	-2.305	0.729661285
170	2.833333333	15.714	-2.311	0.73156062
171	2.85	15.714	-2.311	0.73156062
172	2.866666667	15.733	-2.292	0.725546059
173	2.883333333	15.731	-2.294	0.726179171
174	2.9	15.745	-2.28	0.721747388
175	2.916666667	15.73	-2.295	0.726495726
176	2.933333333	15.734	-2.291	0.725229503
177	2.95	15.737	-2.288	0.724279835
178	2.966666667	15.743	-2.282	0.7223805
179	2.983333333	15.751	-2.274	0.719848053
180	3	15.756	-2.269	0.718265274
181	3.016666667	15.757	-2.268	0.717948718
182	3.033333333	15.759	-2.266	0.717315606
183	3.05	15.765	-2.26	0.715416271
184	3.066666667	15.763	-2.262	0.716049383
185	3.083333333	15.762	-2.263	0.716365939
186	3.1	15.77	-2.255	0.713833492
187	3.116666667	15.767	-2.258	0.714783159
188	3.133333333	15.775	-2.25	0.712250712
189	3.15	15.775	-2.25	0.712250712
190	3.166666667	15.781	-2.244	0.710351377
191	3.183333333	15.781	-2.244	0.710351377
192	3.2	15.784	-2.241	0.709401709 0.708452042
193	3.216666667	15.787	-2.238	0.700402042

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H₀

194	3.233333333	15.791	-2.234	0.707185818
195	3.25	15.791	-2.234	0.707185818
196	3.266666667	15.798	-2.227	0.704969927
197	3.283333333	15.803	-2.222	0.703387148
198	3.3	15.801	-2.224	0.70402026
199	3.316666667	15.802	-2.223	0.703703704
200	3.333333333	15.808	-2.217	0.701804368
201	3.35	15.802	-2.223	0.703703704
202	3.366666667	15.808	-2.217	0.701804368
203	3,383333333	15.808	-2.217	0.701804368
204	3.4	15.817	-2.208	0.698955366
205	3.416666667	15.818	-2.207	0.69863881
206	3.433333333	15.813	-2.212	0.700221589
207	3.45	15.818	-2.207	0.69863881
208	3.466666667	15.827	-2.198	0.695789807
209	3.483333333	15.834	-2.191	0.693573916
210	3.5	15.83	-2.195	0.694840139
211	3.516666667	15.833	-2.192	0.693890472
212	3.533333333	15.833	-2.192	0.693890472
213	3.55	15.836	-2.189	0.692940804
214	3.566666667	15.838	-2.187	0.692307692
215	3.583333333	15.84	-2.185	0.691674581
216	3.6	15.845	-2.18	0.690091801
217	3.616666667	15.853	-2.172 -2.172	0.687559354 0.687559354
218 219	3.633333333 3.65	15.853 15.855	-2.172 -2.17	0.686926242
220	3.666666667	15.851	-2.174	0.688192466
221	3.683333333	15.855	-2.17	0.686926242
222	3.7	15.861	-2.164	0.685026907
223	3.716666667	15.865	-2.16	0.683760684
224	3.733333333	15.87	-2.155	0.682177904
225	3.75	15.868	-2.157	0.682811016
226	3.766666667	15.868	-2.157	0.682811016
227	3.783333333	15.871	-2.154	0.681861349
228	3.8	15.874	-2.151	0.680911681
229	3.816666667	15.881	-2.144	0.67869579
230	3.833333333	15.879	-2.146	0.679328902
231	3.85	15.88	-2.145	0.679012346
232	3.866666667	15.883	-2.142	0.678062678
233	3.883333333	15.879	-2.146	0.679328902
234	3.9	15.892	-2.133	0.675213675
235	3.916666667	15.895	-2.13_	0.674264008
236	3.933333333	15.892	-2.133	0.675213675
237	3.95	15.9	-2.125	0.672681228
238	3.966666667	15.9	<i>-</i> 2.125	0.672681228
239	3.983333333	15.899	-2.126	0.672997784
240	4	15.899	-2.126	0.672997784
241	4.016666667	15.9	-2.125_	0.672681228

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀

242	4.033333333	15.912	-2.113	0.668882558
243	4.05	15.915	-2.11	0.66793289
244	4.066666667	15.921	-2.104	0.666033555
245	4.083333333	15.917	-2.108	0.667299778
246	4.1	15.917	-2.108	0.667299778
247	4.116666667	15.935	-2.09	0.661601773
248	4.133333333	15.93	-2.095	0.663184552
249	4.15	15.932	-2.093	0.66255144
250	4.166666667	15.936	-2.089	0.661285217
251	4.183333333	15.934	-2.091	0.661918329
252	4.2	15.926	-2.099	0.664450776
253	4.216666667	15.937	-2.088	0.660968661
254	4.233333333	15.94	-2.085	0.660018993
255	4.25	15.944	-2.081	0.65875277
256	4.266666667	15.944	-2.081	0.65875277
257	4.283333333	15.949	-2.076	0.657169991
258	4.3	15.949	-2.076	0.657169991
259	4.316666667	15.949	-2.076	0.657169991
260	4.333333333	15.959	-2.066	0.654004432
261	4.35	15.954	-2.071	0.655587211
262	4.366666667	15.956	-2.069	0.654954099
263	4.383333333	15.962	-2.063_	0.653054764
264	4.4	15.964	-2.061	0.652421652
265	4.416666667	15.964	-2.061	0.652421652
266	4.433333333	15.969	-2.056	0.650838873
267	4.45	15.974	-2.051	0.649256094
268	4.466666667	15.971	-2.054	0.650205761
269	4.483333333	15.977	-2.048	0.648306426
270	4.5	15.979	-2.046	0.647673314
271	4.516666667	15.979	-2.046	0.647673314
272	4.533333333	15.983	-2.042	0.646407091
273	4.55	15.985	-2.04	0.645773979
274	4.566666667	15.986	-2.039	0.645457423
275	4.583333333	15.987		0.645140867
276	4.6	15.997	-2.028	0.641975309
277	4.616666667	15.997	-2.028	0.641975309
278	4.633333333	16.006	-2.019	0.639126306
279	4.65	15.998	-2.027	0.641658753
280	4.666666667	16.011	-2.014	0.637543526
281	4.683333333	16.003	-2.022	0.640075973
282	4.7	16.006	-2.019	0.639126306
283	4.716666667	16.013	-2.012	0.636910415
284	4.733333333	16.014	-2.011	0.636593859
285	4.75	16.016	-2.009	0.635960747
286	4.766666667	16.02	-2.005	0.634694524
287	4.783333333	16.021	-2.004	0.634377968
288	4.8	16.028	-1.997	0.632162077
289	4.816666667	16.031	<u>-1.994</u>	0.631212409

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀

290	4.833333333	16.037	-1.988	0.629313074
291	4.85	16.04	-1.985	0.628363406
292	4.866666667	16.038	-1.987	0.628996518
293	4.883333333	16.035	-1.99	0.629946186
294	4.9	16.038	-1.987	0.628996518
295	4.916666667	16.05	-1.975	0.625197847
296	4.933333333	16.049	-1.976	0.625514403
297	4.95	16.049	-1.976	0.625514403
298	4.966666667	16.054	-1.971	0.623931624
299	4.983333333	16.054	-1.971	0.623931624
300	5	16.061	-1.964	0.621715733
301	5.016666667	16.058	-1.967	0.6226654
302	5.033333333	16.065	-1.96	0.620449509
303	5.05	16.069	-1.956	0.619183286
304	5.066666667	16.066	-1.959	0.620132953
305	5.083333333	16.078	-1.947	0.616334283
306	5.1	16.073	-1.952	0.617917062
307	5.116666667	16.078	-1.947	0.616334283
308	5.133333333	16.086	-1.939	0.613801836
309	5.15	16.074	-1.951	0.617600506
310	5.16666667	16.086	-1.939	0.613801836
311	5.183333333	16.083	-1.942	0.614751504
312	5.2	16.085	-1.94	0.614118392
313	5.216666667	16.093	-1.932	0.611585945
314	5.233333333	16.1	-1.925	0.609370054
315	5.25	16.101	-1.924	0.609053498
316	5.266666667	16.092	-1.933	0.611902501
317	5.283333333	16.104	-1.921	0.60810383
318	5.3	16.103	-1.922	0.608420386
319	5.316666667	16.106	-1.919	0.607470719
320	5.333333333	16.11	-1.915	0.606204495
321	5.35	16.107	-1.918	0.607154163
322	5.36666667	16.116	-1.909	0.60430516
323	5.383333333	16.123	-1.902	0.602089269
324	5.4	16.122	-1.903	0.602405825
325	5.416666667	16.121	-1.904	0.602722381
326	5.433333333	16.128	-1.897	0.600506489
327	5.45	16.136	-1.889	0.597974042
328	5.466666667	16.133	-1.892	0.59892371
329	5.483333333	16.139	-1.886	0.597024375
330	5.5	16.137	-1.888	0.597657487
331	5.516666667	16.141	-1.884	0.596391263
332	5.533333333	16.144	-1.881	0.595441595
333	5.55	16.148	-1.877	0.594175372
334	5.566666667	16.146	-1.879	0.594808484
335	5.583333333	16.144	-1.881	0.595441595
336	5.6	16.157	-1.868	0.591326369
337	5.616666667	16.154	-1.871	0.592276037

Elapsed Time (sec)	Elapsed Time (Min)	INPUT I	Н	H/H _o
338	5.633333333	16.164	-1.861	0.589110478
339	5.65	16.16	-1.865	0.590376701
340	5.666666667	16.16	-1.865	0.590376701
341	5.683333333	16.163	-1.862	0.589427034
342	5.7	16.169	-1.856	0.587527699
343	5.716666667	16.166	-1.859	0.588477366
344	5.733333333	16.173	-1.852	0.586261475
345	5.75	16.177	-1.848	0.584995252
346	5.766666667	16.176	-1.849	0.585311808
347	5.783333333	16.179	-1.846	0.58436214
348	5.8	16.182	-1.843	0.583412472
349	5.816666667	16.18	-1.845	0.584045584
350	5.833333333	16.185	-1.84	0.582462805
351	5.85	16.19	-1.835	0.580880025
352	5.866666667	16.194	-1.831	0.579613802
353	5.883333333	16.192	-1.833	0.580246914
354	5.9	16.2	-1.825	0.577714467
355	5.916666667	16.202	-1.823	0.577081355
356	5.933333333	16.202	-1.823	0.577081355
357	5.95	16.203	-1.822	0.576764799
358	5.966666667	16.202	-1.823	0.577081355
359	5.983333333	16.212	-1.813	0.573915796
360	6	16.204	-1.821	0.576448243
361	6.016666667	16.218	-1.807	0.572016461
362	6.033333333	16.22	-1.805	0.571383349
363	6.05	16.224	-1.801	0.5701171 <u>26</u>
364	6.066666667	16.23	1.795	0.56821779
365	6.083333333	16.223	-1.802	0.570433682
366	6.1	16.231	-1.794	0.567901235
367	6.116666667	16.236	-1.789	0.566318455
368	6.133333333	16.239	-1.786	0.565368788
369	6.15	16.232	-1.793	0.567584679
370	6.166666667	16.24	-1.785	0.565052232
371	6.183333333	16.245	-1.78	0.563469452
372	6.2	16.247	-1.778	0.562836341
373	6.216666667	16.252	-1.773	0.561253561
374	6.233333333	16.254	-1.771	0.56062045
375	6.25	16.259	-1.766	0.55903767
376	6.266666667	16.26	-1.765	0.558721114
377	6.283333333	16.258	-1.767	0.559354226
378	6.3	16.256	-1.769	0.559987338
379	6.316666667	16.266	-1.759	0.556821779
380	6.333333333	16.27	-1.755	0.55555556
381	6.35	16.272	-1.753	0.554922444
382	6.36666667	16.273	-1.752	0.554605888
383	6.383333333	16.272	-1.753	0.554922444
384	6.4	16.28	-1.745	0.552389997
385	6.416666667	16.279	-1.746_	0.552706553

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀

386	6.433333333	16.286	-1.739	0.550490662
387	6.45	16.286	-1.739	0.550490662
388	6.46666667	16.288	-1.737	0.54985755
389	6.483333333	16.294	-1.731	0.547958215
390	6.5	16.295	-1.73	0.547641659
391	6.516666667	16.301	-1.724	0.545742324
392	6.533333333	16.295	-1.73	0.547641659
393	6.55	16.308	-1.717	0.543526432
394	6.56666667	16.306	-1.719	0.544159544
395	6.583333333	16.311	-1.714	0.542576765
396	6.6	16.315	-1.71	0.541310541
397	6.616666667	16.311	-1.714	0.542576765
398	6.633333333	16.32	-1.705	0.539727762
399	6.65	16.326	-1.699	0.537828427
400	6.66666667	16.326	-1.699	0.537828427
401	6.683333333	16.327	-1.698	0.537511871
402	6.7	16.327	-1.698	0.537511871
403	6.716666667	16.329	-1.696	0.536878759
404	6.733333333	16.337	-1.688	0.534346312
405	6.75	16.336	-1.689	0.534662868
406	6.766666667	16.343	-1.682	0.532446977
407	6.783333333	16.337	-1.688	0.534346312
408	6.8	16.348	-1.677	0.530864198
409	6.816666667	16.353	-1.672	0.529281418
410	6.833333333	16.35	-1.675	0.530231086
411	6.85	16.358	-1.667	0.527698639
412	6.86666667	16.361	-1.664	0.526748971
413	6.883333333	16.362	-1.663	0.526432415
414	6.9	16.365	-1.66	0.525482748
415	6.916666667	16.364	1.661	0.525799304
416	6.933333333	16.378	-1.647	0.521367521
417	6.95	16.363	-1.662	0.526115859
418	6.96666667	16.374	-1.651	0.522633745
419	6.983333333	16.375		0.522317189
420	7	16.379	-1.646	0.521050965
421	7.016666667	16.382	-1.643	0.520101298
422	7.033333333	16.385	-1.64	0.51915163
423	7.05	16.387	-1.638	0.518518519
424	7.066666667	16.39	-1.635	0.517568851
425	7.083333333	16.396	-1.629	0.515669516
426	7.1	16.403	-1.622	0.513453625
427	7.116666667	16.403	-1.622	0.513453625
428	7.133333333	16.409	-1.616	0.511554289
429	7.15	16.409	-1.616	0.511554289
430	7.166666667	16.413	-1.612	0.510288066
431	7.183333333	16.413	-1.612	0.510288066
432	7.2	16.419	-1.606	0.508388731
433	7.216666667	16.417	-1.608	0.509021842

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
434	7.233333333	16.423	-1.602	0.507122507
435	7.25	16.426	-1.599	0.50617284
436	7.266666667	16.428	-1.597	0.505539728
437	7.283333333	16.435	-1.59	0.503323837
438	7.20000000	16.437	-1.588	0.502690725
439	7.316666667	16.438	-1.587	0.502374169
440	7.333333333	16.439	-1.586	0.502057613
441	7.35	16.442	-1.583	0.501107946
442	7.366666667	16.447	-1.578	0.499525166
443	7.383333333	16.453	-1.572	0.497625831
444	7.4	16.451	-1.574	0.498258943
445	7.416666667	16.451	-1.574	0.498258943
446	7.433333333	16.457	-1.568	0.496359607
447	7.45	16.462	-1.563	0.494776828
448	7.466666667	16.465	-1.56	0.49382716
449	7.483333333	16.472	-1.553	0.491611269
450	7.5	16.469	-1.556	0.492560937
451	7.516666667	16.478	-1.547	0.489711934
452	7.533333333	16.48	-1.545	0.489078822
453	7.55	16.486	-1.539	0.487179487
454	7.566666667	16.483	-1.542	0.488129155
455	7.583333333	16.492	-1.533	0.485280152
456	7.6	16.498	-1.527	0.483380817
457	7.616666667	16.504	-1.521	0.481481481
458	7.633333333	16.508	-1.517	0.480215258
459	7.65	16.504	-1.521	0.481481481
460	7.666666667	16.508	-1.517	0.480215258
461	7.683333333	16.513	-1.512	0.478632479
462	7.7	16.517	-1.508	0.477366255
463	7.716666667	16.522	-1.503	0.475783476
464	7.733333333	16.524	-1.501	0.475150364
465	7.75	16.527	-1.498	0.474200696
466	7.766666667	16.531	-1.494	0.472934473
467	7.783333333	16.53	-1.495	0.473251029
468	7.8	16.536	-1.489	0.471351694
469	7.816666667	16.542	-1.483	0.469452358
470	7.833333333	16.544	-1.481	0.468819247
471	7.85	16.547	-1.478	0.467869579
472	7.866666667	16.548	-1.477	0.467553023
473	7.883333333	16.553	-1.472	0.465970244
474	7.9	16.558	-1.467	0.464387464
475	7.916666667	16.561	-1.464	0.463437797
476	7.933333333	16.562	-1.463	0.463121241
477	7.95	16.566	-1.4 <u>5</u> 9	0.461855017
478	7.966666667	16.574	-1.451	0.45932257
479	7.983333333	16.57	-1.455	0.460588794
480	8	16.578	-1.447	0.458056347
481	8.016666667	16.582	-1.443	0.456790123

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀

482	8.033333333	16.58	-1.445	0.457423235
483	8.05	16.589	-1.436	0.454574232
484	8.066666667	16.592	-1.433	0.453624565
485	8.083333333	16.583	-1.442	0.456473568
486	8.1	16.596	-1.429	0.452358341
487	8.116666667	16.593	-1.432	0.453308009
488	8.133333333	16.602	-1.423	0.450459006
489	8.15	16.604	-1.421	0.449825894
490	8.166666667	16.614	-1.411	0.446660336
491	8.183333333	16.611	-1.414	0.447610003
492	8.2	16.614	-1.411	0.446660336
493	8.216666667	16.614	-1.411	0.446660336
494	8.233333333	16.621	-1.404	0.44444444
495	8.25	16.622	-1.403	0.444127889
496	8.266666667	16.619	-1.406	0.445077556
497	8.283333333	16.629	-1.396	0.441911997
498	8.3	16.627	-1.398	0.442545109
499	8.316666667	16.631	-1.394	0.441278886
500	8.33333333	16.638	-1.387	0.439062995
501	8.35	16.638	-1.387	0.439062995
502	8.366666667	16.636	-1.389	0.439696106
503	8.383333333	16.645	-1.38	0.436847104
504	8.4	16.646	-1.379	0.436530548
505	8.416666667	16.646	-1.379	0.436530548
506	8.433333333	16.648	-1.377	0.435897436
507	8.45	16.654	-1.371	0.433998101
508	8.466666667	16.652	-1.373	0.434631212
509	8.483333333	16.65	-1.375	0.435264324
510	8.5	16.658	-1.367	0.432731877
511	8.516666667	16.662	-1.363	0.431465654
512	8.533333333	16.664	-1.361	0.430832542
513	8.55	16.663	-1.362	0.431149098
514	8.566666667	16.667	-1.358	0.429882874
515	8.583333333	16.673	-1.352	0.427983539
516	8.6	16.671	-1.354	0.428616651
517	8.616666667	16.677	-1.348	0.426717316
518	8.633333333	16.673	-1.352	0.427983539
519	8.65	16.68	-1.345	0.425767648
520	8.666666667	16.681	-1.344	0.425451092
521	8.683333333	16.686	-1.339	0.423868313
522	8.7	16.689	-1.336	0.422918645
523	8.716666667	16.689	-1.336	0.422918645
524	8.733333333	16.692	-1.333	0.421968978
525	8.75	16.701	-1.324	0.419119975
526	8.766666667	16.693	-1.332	0.421652422
527	8.783333333	16.695	-1.33	0.42101931
528	8.8	16.7	-1.325	0.419436531
529	8.816666667	16.701	-1.324_	0.419119975

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H₀
530	8.833333333	16.706	-1.319	0.417537195
531	8.85	16.706	-1.319	0.417537195
532	8.866666667	16.713	-1.312	0.415321304
533	8.883333333	16.717	-1.308	0.414055081
534	8.9	16.714	-1.311	0.415004748
535	8.916666667	16.718	-1.307	0.413738525
536	8.933333333	16.721	-1.304	0.412788857
537	8.95	16.719	-1.306	0.413421969
538	8.966666667	16.726	-1.299	0.411206078
539	8.983333333	16.722	-1.303	0.412472301
540	9	16.728	-1.297	0.410572966
541	9.016666667	16.73	-1.295	0.409939854
542	9.033333333	16.736	-1.289	0.408040519
543	9.05	16.736	-1.289	0.408040519
544	9.066666667	16.736	-1.289	0.408040519
545	9.083333333	16.734	-1.291	0.408673631
546	9.1	16.747	-1.278	0.404558405
547	9.116666667	16.75	-1.275	0.403608737
548	9.133333333	16.747	-1.278	0.404558405
549	9.15	16.755	-1.27	0.402025958
550	9.166666667	16.752	-1.273	0.402975625
551	9.183333333	16.757	-1.268	0.401392846
552	9.2	16.756	-1.269	0.401709402
553	9.216666667	16.761	-1.264	0.400126622
554	9.233333333	16.766	-1.259	0.398543843
555	9.25	16.764	-1.261	0.399176955
556	9.266666667	16.771	-1.254	0.396961064
557	9.283333333	16.775	-1.25	0.39569484
558	9.3	16.771	-1.254	0.396961064
559	9.316666667	16.78	-1.245	0.394112061
560	9.333333333	16.777	-1.248	0.395061728
561	9.35	16.78	-1.245	0.394112061
562	9.366666667	16.784	-1.241	0.392845837 0.394112061
563	9.383333333	16.78	-1.245	
564	9.4	16.786	-1.239	0.392212726
565	9.416666667	16.793	-1.232	0.39031339
566	9.433333333	16.792	-1.233	
567	9.45	16.785	-1.24	0.392529281
568	9.466666667	16.799	-1.226	0.389680279
569	9.483333333	16.794	-1.231	0.386198164
570	9.5	16.805	-1.22	
571	9.516666667	16.802	-1.223	0.387147832 0.385881608
572	9.533333333	16.806	-1.219	0.386198164
573	9.55	16.805	-1.22 1.210	
574	9.566666667	16.806	-1.219	0.385881608
575 576	9.583333333	16.813	-1. <u>212</u>	0.383665717
576	9.6	16.815	-1.21	0.383032605
577	9.616666667	16.815	1.21_	0.383032605

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
578	9.633333333	16.812	-1.213	0.383982273
579	9.65	16.82	-1.205	0.381449826
580	9.666666667	16.817	-1.208	0.382399494
581	9.683333333	16.827	-1.198	0.379233935
582	9.7	16.827	-1.198	0.379233935
583	9.716666667	16.825	-1.2	0.379867047
584	9.733333333	16.83	-1.195	0.378284267
585	9.75	16.832	-1.193	0.377651155
586	9.766666667	16.836	-1.189	0.376384932
587	9.783333333	16.836	-1.189	0.376384932
588	9.8	16.833	-1.192	0.3773346
589	9.816666667	16.842	-1.183	0.374485597
590	9.833333333	16.846	-1.179	0.373219373
591	9.85	16.848	-1.177	0.372586261
592	9.866666667	16.851	-1.174	0.371636594
593	9.883333333	16.85	-1.175	0.37195315
594	9.9	16.855	-1.17	0.37037037
595	9.916666667	16.854	-1.171	0.370686926
596	9.933333333	16.857	-1.168	0.369737259
597	9.95	16.861	-1.164	0.368471035
598	9.96666667	16.867	- 1.158	0.3665717
599	9.983333333	16.861	-1.164	0.368471035
600	10	16.866	-1.159	0.366888256
603	10.05	16.874	-1.151	0.364355809
606	10.1	16.88	-1.145	0.362456474
609	10.15	16.886	-1.139	0.360557138
612	10.2	16.891	-1.134	0.358974359
615	10.25	16.902	-1.123	0.355492244
618	10.3	16.908	-1.117	0.353592909
621	10.35	16.914	-1.111	0.351693574
624	10.4	16.919	-1.106	0.350110795
627	10.45	16.924	-1.101	0.348528015
630	10.5	16.936_	-1.089	0.344729345
633	10.55	16.937	-1.088	0.344412789
636	10.6	16.946	-1.079	0.341563786
639	10.65	16.954	-1.071	0.339031339
642	10.7	16.958	-1.067	0.337765116
645	10.75	16.968	-1.057	0.334599557
648	10.8	16.967	-1.058	0.334916113
651	10.85	16.981	-1.044	0.33048433
654	10.9	16.983	-1.042	0.329851219
657	10.95	16.993	-1.032	0.32668566
660	11	16.994	-1.031	0.326369104
663	11.05	17.001	-1.024	0.324153213
666	11.1	17.004	-1.021	0.323203545
669	11.15	17.011	-1.014	0.320987654
672	11.2	17.018	-1.007	0.318771763
675	11.25	17.018	1.007_	0.318771763

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H _o
				*
678	11.3	17.025	<u>-1</u>	0.316555872
681	11.35	17.029	-0.996	0.315289649
684	11.4	17.036	-0.989	0.313073758
687	11.45	17.038	-0.987	0.312440646
690	11.5	17.04	-0.985	0.311807534
693	11.55	17.046	-0.979	0.309908199
696	11.6	17.047	-0.978	0.309591643
699	11.65	17.057	-0.968	0.306426084
702	11.7	17.055	-0.97	0.307059196
705	11.75	17.062	-0.963	0.304843305
708	11.8	17.067	-0.958	0.303260525
711	11.85	17.065	-0.96	0.303893637
714	11.9	17.073	-0.952	0.30136119
717	11.95	17.075	-0.95	0.300728079
720	12	17.077	-0.948	0.300094967
723	12.05	17.082	-0.943	0.298512187
726	12.1	17.089	-0.936	0.296296296
729	12.15	17.095	-0.93	0.294396961
732	12.2	17.098	-0.927	0.293447293
735	12.25	17.1	-0.925	0.292814182
738	12.3	17.108	-0.917	0.290281735
741	12.35	17.107	-0.918	0.290598291
744	12.4	17.107	-0.918	0.290598291
747	12.45	17.118	-0.907	0.287116176
750	12.5	17.12	-0.905	0.286483064
753	12.55	17.123	-0.902	0.285533397
756	12.6	17.126	-0.899	0.284583729
759	12.65	17.13	-0.895	0.283317506
762	12.7	17.132	-0.893	0.282684394
765	12.75	17.14	-0.885	0.280151947
768	12.8	17.137	-0.888	0.281101614
771	12.85	17.14	-0.885	0.280151947
774	12.9	17.143	-0.882	0.279202279
777	12.95	17.155	-0.87	0.275403609
780	13	17.156	-0.869	0.27508705 <u>3</u>
783	13.05	17.162	-0.863	0.273187718
786	13.1	17.161	-0.864	0.273504274
789	13.15 ·	17.162	-0.863	0.273187718
792	13.2	17.167	-0.858	0.271604938
795	13.25	17.174	-0.851	0.269389047
798	13.3	17.172	-0.853	0.270022159
801	13.35	17.176	-0.849	0.268755935
804	13.4	17.183	-0.842	0.266540044
807	13.45	17.19	-0.835	0.264324153
810	13.5	17.185	-0.84	0.265906933
813	13.55	17.197	-0.828	0.262108262
816	13.6	17.192	-0.833	0.263691041
819	13.65	17.195	<u>-0.83</u>	0.262741374

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
			••	
822	13.7	17.194	-0.831	0.26305793
825	13.75	17.194	-0.823	0.260525483
828	13.8	17.202	-0.825	0.261158594
831	13.85	17.207	-0.823	0.258942703
834	13.9	17.211	-0.814	0.25767648
837	13.95	17.213	-0.812	0.257043368
840	14	17.213	-0.812	0.257043368
843	14.05	17.213	-0.811	0.256726812
846	14.1	17.215	-0.81	0.256410256
849	14.15	17.223	-0.802	0.253877809
852	14.13	17.225	-0.002	0.253244698
855	14.25	17.225	-0.8	0.253244698
858	14.3	17.233	-0.792	0.250712251
861	14.35	17.233	-0.792	0.250712251
864	14.4	17.234	-0.791	0.250395695
867	14.45	17.235	-0.79	0.250079139
870	14.5	17.234	-0.791	0.250395695
873	14.55	17.241	-0.784	0.248179804
876	14.6	17.24	-0.785	0.24849636
879	14.65	17.249	-0.776	0.245647357
882	14.7	17.252	-0.773	0.244697689
885	14.75	17.253	-0.772	0.244381133
888	14.8	17.255	-0.77	0.243748022
891	14.85	17.253	-0.772	0.244381133
894	14.9	17.263	-0.762	0.241215575
897	14.95	17.265	-0.76	0.240582463
900	15	17.264	-0.761	0.240899019
903	15.05	17.268	-0.757	0.239632795
906	15.1	17.271	-0.754	0.238683128
909	15.15	17.271	-0.754	0.238683128
912	15.2	17.272	-0.753	0.238366572
915	15.25	17.278	-0.747	0.236467236
918	15.3	17.276	-0.749	0.237100348
921	15.35	17.281	-0.744	0.235517569
924	15.4	17.287	-0.738	0.233618234
927	15.45	17.289	-0.736	0.232985122
930	15.5	17.285	-0.74	0.234251345
933	15.55	17.296	-0.729	0.230769231
936	15.6	17.291	-0.734	0.23235201
939	15.65	17.301	-0.724	0.229186451
942	15.7	17.301	-0.724	0.229186451
945	15.75	17.297	-0.728	0.230452675
948	15.8	17.303	-0.722	0.22855334
951	15.85	17.311	-0.714	0.226020893
954	15.9	17.31	-0.715	0.226337449
957	15.95	17.312	-0.713	0.225704337
960	16	17.312	-0.713	0.225704337
963	16.05	17.317	-0.708	0.224121557

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀

966	16.1	17.321	-0.704	0.222855334
969	16.15	17.32	-0.705	0.22317189
972	16.2	17.32	-0.705	0.22317189
975	16.25	17.324	-0.701	0.221905666
978	16.3	17.326	-0.699	0.221272555
981	16.35	17.331	-0.694	0.219689775
984	16.4	17.331	-0.694	0.219689775
987	16.45	17.332	-0.693	0.219373219
990	16.5	17.337	-0.688	0.21779044
993	16.55	17.335	-0.69	0.218423552
996	16.6	17.337	-0.688	0.21779044
999	16.65	17.34	-0.685	0.216840772
1002	16.7	17.339	-0.686	0.217157328
1005	16.75	17.343	-0.682	0.215891105
1008	16.8	17.345	-0.68	0.215257993
1011	16.85	17.351	-0.674	0.213358658
1014	16.9	17.352	-0.673	0.213042102
1017	16.95	17.355	-0.67	0.212092434
1020	17	17.358	-0.667	0.211142767
1023	17.05	17.362	-0.663	0.209876543
1026	· - 17.1	17.362	-0.663	0.209876543
1029	17.15	17.369	-0.656	0.207660652
1032	17.2	17.37	-0.655	0.207344096
1035	17.25	17.371	-0.654	0.20702754
1038	17.3	17.374	-0.651	0.206077873
1041	17.35	17.37	-0.655	0.207344096
1044	17.4	17.382	-0.643	0.203545426
1047	17.45	17.378	-0.647	0.204811649
1050	17.5	17.386	-0.639	0.202279202
1053	17.55	17.389	-0.636	0.201329535
1056	17.6	17.392	-0.633	0.200379867
1059	17.65	17.388	-0.637	0.201646091
1062	17.7	17.395	-0.63	0.199430199
1065	17.75	17.394	-0.631	0.199746755
1068	17.8	17.403	-0.622	0.196897752
1071	17.85	17.407	-0.618	0.195631529
1074	17.9	17.399	-0.626	0.198163976
1077	17.95	17.407	-0.618	0.195631529
1080	18	17.413	-0.612	0.193732194
1083	18.05	17.416	-0.609	0.192782526
1086	18.1	17.41	-0.615	0.194681861
1089	18.15	17.417	-0.608	0.19246597
1092	18.2	17.417	-0.608	0.19246597
1095	18.25	17.42	-0.605	0.191516303
1098	18.3	17.425	-0.6	0.189933523
1101	18.35	17.427	-0.598	0.189300412
1104	18.4	17.431	-0.594	0.188034188
1107	18.45	17.432	-0.593	0.187717632

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
1110	18.5	17.44	-0.585	0.185185185
1113	18.55	17.438	-0.587	0.185818297
1116	18.6	17.44	-0.585	0.185185185
1119	18.65	17.438	-0.587	0.185818297
1122	18.7	17.441	-0.584	0.184868629
1125	18.75	17.444	-0.581	0.183918962
1128	18.8	17.448	-0.577	0.182652738
1131	18.85	17.448	-0.577	0.182652738
1134	18.9	17.451	-0.574	0.181703071
1137	18.95	17.454	-0.571	0.180753403
1140	19	17.452	-0.573	0.181386515
1143	19.05	17.464	-0.561	0.177587844
1146	19.1	17.462	-0.563	0.178220956
1149	19.15	17.46	-0.565	0.178854068
1152	19.2	17.469	-0.556	0.176005065
1155	19.25	17.466	-0.559	0.176954733
1158	19.3	17.47	-0.555	0.175688509
1161	19.35	17.475	-0.55	0.17410573
1164	19.4	17.473	-0.552	0.174738841
1167	. 19.45	17.477	-0.548	0.173472618
1170°	19:5	17.475	-0.55	0.17410573
1173	19.55	17.481	-0.544	0.172206394
1176	19.6	17.484	-0.541	0.171256727
1179	19.65	17.487	-0.538	0.170307059
1182	19.7	17.487	-0.538	0.170307059
1185	19.75	17.488	-0.537	0.169990503
1188	19.8	17.49	-0.535	0.169357392
1191	19.85	17.494	-0.531	0.168091168
1194	19.9	17.498	-0.527	0.166824945
1 <u>19</u> 7	19.95	17.498	-0.527	0.166824945
1200	20	17.5	-0.525	0.166191833
1206	20.1	17.506	-0.519	0.164292498
1212	20.2	17.508	-0.517	0.163659386
1218	20.3	17.515	-0.51	0.161443495
1224	20.4	17.519	-0.506	0.160177271
1230	20.5	17.523	-0.502	0.158911048
1236	20.6	17.529	-0.496	0.157011713
1242	20.7	17.525	-0.5	0.158277936
1248	20.8	17.537	-0.488	0.154479266
1254	20.9	17.537	-0.488_	0.154479266
1260	21	17.542	-0.483	0.152896486
1266	21.1	17.548	-0.477	0.150997151
1272	21.2	17.549	-0.476	0.150680595
1278	21.3	17.547	-0.478	0.151313707
1284	21.4	17.562	-0.463	0.146565369
1290	21.5	17.561	-0.464	0.146881925
1296	21.6	17.569	-0.456	0.144349478
1302	21.7	17.568	-0.457	0.144666034

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H ₀
4000	04.0	47.574	0.454	0 440740000
1308	21.8	17.571	-0.454	0.143716366
1314	21.9 22	17.576	-0.449	0.142133587
1320		17.58	-0.445	0.140867363
1326	22.1	17.587	-0.438	0.138651472
1332	22.2	17.584	-0.441	0.13960114 0.136752137
1338 1344	22.3 22.4	17.593 17.594	-0.432 -0.431	0.136435581
1350	22.5	17.594	-0.431	0.135802469
1356	22.6	17.603	-0.429	0.133586578
1362	22.7	17.603	-0.422	0.133380378
1368	22.8	17.609	-0.416	0.132320333
1374	22.9	17.611	-0.414	0.131054131
1380	23	17.615	-0.414	0.129787908
1386	23.1	17.617	-0.408	0.129154796
1392	23.2	17.619	-0.406	0.128521684
1398	23.3	17.622	-0.403	0.127572016
1404	23.4	17.621	-0.404	0.127888572
1410	23.5	17.631	-0.394	0.124723014
1416	23.6	17.636	-0.389	0.123140234
1422	23.7	17.634	-0.391	0.123773346
1428	23.8	17.643	-0.382	0.120924343
1434	23.9	17.644	-0.381	0.120607787
1440	24	17.643	-0.382	0.120924343
1446	24.1	17.648	-0.377	0.119341564
1452	24.2	17.651	-0.374	0.118391896
1458	24.3	17.654	-0.371	0.117442229
1464	24.4	17.659	-0.366	0.115859449
1470	24.5	17.661	-0.364	0.115226337
1476	24.6	17.661	-0.364	0.115226337
1482	24.7	17.671	-0.354	0.112060779
1488	24.8	17.67	-0.355	0.112377335
1494	24.9	17.671	-0.354	0.112060779
1500	25	17.682	-0.343	0.108578664
1506	25.1	17.679	-0.346	0.109528332
1512	25.2	17.68	-0.345	0.109211776
1518	25.3	17.682	-0.343	0.108578664
1524	25.4	17.684	-0.341	0.107945552
1530	25.5	17.695	-0.33	0.104463438
1536	25.6	17.693	-0.332	0.10509655
1542	25.7	17.691	0.334	0.105729661
1548	25.8	17.697	-0.328	0.103830326
1554	25.9	17.702	-0.323	0.102247547
1560	26	17.703	-0.322	0.101930991
1566	26.1	17.697	-0.328	0.103830326
1572	26.2	17.699	-0.326	0.103197214
1578	26.3	17.705	-0.32	0.101297879
1584	26.4	17.715	-0.31	0.09813232
1590	26.5	17.707	-0.318	0.100664767

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H₀
•••••				***********
1596	26.6	17.716	-0.309	0.097815764
1602	26.7	17.714	-0.311	0.098448876
1608	26.8	17.719	-0.306	0.096866097
1614	26.9	17.72	-0.305	0.096549541
1620	27	17.729	-0.296	0.093700538
1626	27.1	17.722	-0.303	0.095916429
1632	27.2	17.722	-0.303	0.095916429
1638	27.3	17.729	-0.296	0.093700538
1644	27.4	17.732	-0.293	0.092750871
1650	27.5	17.739	-0.286	0.090534979
1656	27.6	17.74	-0.285	0.090218424
1662	27.7	17.74	-0.285	0.090218424
1668	27.8	17.744	0.281	0.0889522
1674	27.9	17.742	-0.283	0.089585312
1680	28	17.747	-0.278	0.088002532
1686	28.1	17.748	-0.277	0.087685977
1692	28.2	17.75	-0.275	0.087052865
1698	28.3	17.75	-0.275	0.087052865
1704	28.4	17.753	-0.272	0.086103197
1710	28.5	17.751	-0.274	0.086736309
1716	28.6	17.757	-0.268	0.084836974
1722	28.7	17.762	-0.263	0.083254194
1728	28.8	17.763	-0.262	0.082937638
1734	28.9	17.766	-0.259	0.081987971
1740	29	17.769	-0.256	0.081038303
1746	29.1	17.767	-0.258	0.081671415
1752	29.2	17.775	-0.25	0.079138968
1758	29.3	17.776	-0.249	0.078822412
1764	29.4	17.775	-0.25	0.079138968
1770	29.5	17.773	-0.252	0.07977208
1776	29.6	17.784	-0.241	0.076289965
1782	29.7	17.774_	-0.251	0.079455524
1788	29.8	17.776	-0.249	0.078822412
1794	29.9	17.784	-0.241	0.076289965
1800	30	17.785	-0.24	0.075973409
1806	30.1	17.787	-0.238	0.075340298
1812	30.2	17.785	-0.24	0.075973409
1818	30.3	17.795	-0.23	0.072807851
1824	30.4	17.791	-0.234	0.074074074
1830	30.5	17.789	-0.236	0.074707186
1836	30.6	17.794	-0.231	0.073124406
1842	30.7	17.794	-0.231	0.073124406
1848	30.8	17.791	-0.234	0.074074074
1854	30.9	17.802	-0.223	0.070591959
1860	31	17.808	-0.217	0.068692624
1866	31.1	17.798	-0.227	0.071858183
1872	31.2	17.809	-0.216	0.068376068
1878	31.3	17.805	-0.22	0.069642292

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H _o
1884	31.4	17.81	-0.215	0.068059513
1890	31.5	17.81	-0.215	0.068059513
1896	31.6	17.811	-0.214	0.067742957
1902	31.7	17.812	-0.213	0.067426401
1908	31.8	17.819	-0.206	0.06521051
1914	31.9	17.816	-0.209	0.066160177
1920	32	17.818	-0.207	0.065527066
1926	32.1	17.824	-0.201	0.06362773
1932	32.2	17.825	-0.2	0.063311174
1938	32.3	17.826	-0.199	0.062994619
1944	32.4	17.825	-0.2	0.063311174
1950	32.5	17.823	-0.202	0.063944286
1956	32.6	17.83	-0.195	0.061728395
1962	32.7	17.831	-0.194	0.061411839
1968	32.8	17.833	-0.192	0.060778727
1974	32.9	17.832	-0.193	0.061095283
1980	33	17.836	-0.189	0.05982906
1986	33.1	17.832	-0.193	0.061095283
1992	33.2	17.841	-0.184	0.05824628
1998	33.3	17.84	-0.185	0.058562836
2004	33.4	17.84	-0.185	0.058562836
2010	33.5	17.84	-0.185	0.058562836
2016	33.6	17.84	-0.185	0.058562836
2022	33.7	17.85	-0.175	0.055397278
2028	33.8	17.844	-0.181	0.057296613
2034	33.9	17.848	-0.177	0.056030389
2040	34	17.851	-0.174	0.055080722
2046	34.1	17.852	-0.173	0.054764166
2052	34.2	17.855	-0.17	0.053814498
2058	34.3	17.854	-0.171	0.05413 <u>1054</u>
2064	34.4	17.86	-0.165	0.052231719
2070	34.5	17.857	-0.168	0.053181387
2076	34.6	17.856	-0.169	0.053497942
2082	34.7	17.861	-0.164	0.051915163
2088	34.8	17.86	-0.165	0.052231719
2094	34.9	17.864	-0.161	0.050965495
2100	35	17.867	-0.158	0.050015828
2106	35.1	17.866_	-0.159	0.050332384
2112	35.2	17.87	-0.155	0.04906616
2118	35.3	17.869	-0.156	0.049382716
2124	35.4	17.87	-0.155	0.04906616
2130	35.5	17.872	-0.153	0.048433048
2136	35.6	17.875	-0.15	0.047483381
2142	35.7	17.878	-0.147	0.046533713
2148	35.8	17.874	-0.151	0.047799937
2154	35.9	17.878	-0.147	0.046533713
2160	36	17.876	-0.149	0.047166825
2166	36.1	17.884	-0.141	0.044634378

Elapsed Time (sec)	Elapsed Time (Min)	INPLIT 1	Н	H/H ₀
Liapsed Time (see)	Liapsed Time (Min)		11	11/110
2172	26.2	17 070	0.147	0.046522712
2172	36.2	17.878	-0.147	0.046533713
	36.3	17.888	-0.137	0.043368154
2184	36.4	17.88	-0.145	0.045900601
2190	36.5	17.887	-0.138	0.04368471
2196 2202	36.6	17.889	-0.136	0.043051599
	36.7	17.884	-0.141	0.044634378
2208 2214	36.8	17.885	-0.14	0.044317822
	36.9 37	17.889	-0.136	0.043051599
2220		17.889	-0.136	0.043051599
2226	37.1	17.892	-0.133	0.042101931
2232	37.2	17.894	-0.131	0.041468819
2238	37.3	17.892	-0.133	0.042101931
2244	37.4	17.893	-0.132	0.041785375
2250	37.5	17.898	-0.127	0.040202596
2256	37.6	17.897	-0.128	0.040519152
2262	37.7	17.898	-0.127	0.040202596
2268	37.8	17.897	-0.128	0.040519152
2274	37.9	17.902	-0.123	0.038936372
2280	. 38	17.898	-0.127	0.040202596
2286	38.1	17.899	-0.126	0.03988604
2292	38.2	17.898	-0.127	0.040202596
2298	38.3	17.903	-0.122	0.038619816
2304	38.4	17.905	-0.12	0.037986705
2310	38.5	17.894	-0.131	0.041468819
2316	38.6	17.906	-0.119	0.037670149
2322	38.7	17.906	-0.119	0.037670149
2328	38.8	17.909	-0.116	0.036720481
2334	38.9	17.916	-0.109	0.03450459
2340	39	17.91	-0.115	0.036403925
2346	39.1	17.913	-0.112	0.035454258
2352	39.2	17.913	-0.112	0.035454258
2358	39.3	17.908	-0.117	0.037037037
2364	39.4	17.911	-0.114	0.036087369
2370	39.5	17.914	-0.111	0.035137702
2376	39.6	17.916	-0.109_	0.03450459
2382	39.7	17.914	-0.111	0.035137702
2388	39.8	17.918	-0.107	0.033871478
2394	39.9	17.919	-0.106	0.033554922 0.032288699
2400	40	17.923	-0.102	
2460	41	17.928	-0.097	0.03070592
2520	42	17.939	-0.086_	0.027223805
2580	43	17.944	-0.081	0.025641026
2640 2700	44	17.954	-0.071	0.022475467
2700	45	17.963	-0.062	0.019626464
2760	46	17.966	-0.059	0.018676796
2820	47	17.973	-0.052	0.016460905
2880	48	17.98	-0.045	0.014245014
2940	49	17.984	-0.041_	0.012978791

Elapsed Time (sec)	Elapsed Time (Min)	INPUT 1	Н	H/H _o

3000	50	17.991	-0.034	0.0107629
3060	51	17.998	-0.027	0.008547009
3120	52	18	-0.025	0.007913897
3180	53	18.004	-0.021	0.006647673
3240	54	18.006	-0.019	0.006014562
3299	54.98333333	18.025	0	0

Appendix D

Corrective Action Plan Budget

General Information for the Budget and Billing Forms

LPC#:	0910105433		County:	Champa	aign	
City:	Champaign		Site Name:	Freedon	n Oil Company	
Site Addres	s: 1406 North Pr	ospect_				
IEMA Incide	ent No:	20080255				
IEMA Notifi	cation Date:	2/25/2008				
Date this fo	rm was prepared:	July 1,2013				
This form i	s being submitte	ed as a (check one if appl	icable):			
	X Budget Propo	sal				
	Budget Amend	lment (Budget Amendments	must include	only the o	costs over the pr	evious budget.)
	Billing Packag	e				
	Please provide	e the name(s) and date(s)	of report(s) de	ocumenti	ing the costs as	requested:
	Name(s):	 —				RECEIVE
	Date (s):					JUL 0 8 2013
This packa	ge is being subr	nitted for the site activitie	s indicated	below:		IEPA/BOL
35 III. Adm	. Code 734:					IEFA/BUL
	Early Action					
	Free Produce	Removal After Early Action	า			
	Site Investigat	tionStage 1:	Stage :	2: 🔲	Stage 3:	
	X Corrective Act	tion				
35 III. Adm	. Code 732:					
	Early Action					
	Free Produce	Removal After Early Action	า			
	Site Classifica	ition				
	Low Priority C	orrective Action				
	High Priority C	Corrective Action				
35 III. Adm	. Code 731					
	Site Investigat	tion				
	Corrective Act	tion				
IL 532-2825 LPC 630 Rev.	1/2007					

General Information for the Budget and Billing Forms

The following address will be used as the mailing address for checks and any final determination letters regarding payment from the Fund.

Pay to the order of: Freed	om Oil Company	/	·-·-	
Send in care of: Mr. Ma	ark Eckhoff			
Address: 814 West Cl	nestnut Street			
City: Bloomington	State: IL Zip		Zip:	61701
The payee is the:	Owner X	perator	x	(Check one or both)
Mul				W-9 must be submitted.
Signature of the owner of operator of the UST(s) (required)				Click here to print off a W-9 Form.
parent or joint stock comp or joint stock company o	any of the owne	er or operator; and	any company owi	er or operator; any subsidiary, ned by any parent, subsidiary
have been removed).			udes USTs prese	ently at the site and USTs that
Number of incidents rep	oned to the inivi	A for this site: _		•
Incidents Numbers assig	ned to the site of	due to releases fro	om USTs:	20080255
Please list all tanks that	have ever been		e and tanks that a	are presently located at the site
Product Stored in UST	Size (gallons)	Did UST have a release?	Incident No.	Type of Release Tank Leak / Overfill / Piping Leak
diesel fuel	6,000	YesX No	20080255	overfills/spills
gasoline	10,000	YesX No	20080255	overfills/spills
gasoline	6,000	YesX No	20080255	overfills/spills
gasoline	6,000	YesX No	20080255	overfills/spills
gasoline	2,000	Yes X No	20080255	overfills/spills
diesel fuel	10,000	Yes No X	N/A	N/A
gasoline	8,000	Yes No X	N/A	N/A
gasoline	12,000	Yes No X	N/A	N/A
			· · · · · · · · · · · · · · · · · · ·	

Budget Summary

Chose the applicable regulation:

734

O 732

	_		-		
734	Free Product	Stage 1 Site Investigation	Stage 2 Site Investigation	Stage 3 Site Investigation	Corrective Action
				:	
Drilling and Monitoring Well Costs Form					\$1,429.23
Analytical Costs Form					\$11,911.76
Remediation and Disposal Costs Form					\$108,676.35
UST Removal and Abandonment Costs Form					\$0.00
Paving, Demolition, and Well Abandonment Costs Form					\$16,640.00
Consulting Personnel Costs Form					\$53,694.76
Consultant's Materials Costs Form					\$2,438.00
Handling Charges Form	Handling charges will be determined at the time a billing package is submitted to the Illinois EPA. The amount of allowable charges will be determined in accordance with the Handling Charges Form.				
Total					\$194,790.10

Drilling and Monitoring Well Costs Form

1. Drilling

Number of Borings to Be Drilled	Type HSA / PUSH / Injection	Depth (feet) of Each Boring	Total Feet Drilled	Reason for Drilling
3	PUSH	10.00	30.00	off-site contamination to south of MW-1
			0.00	
			0.00	
			0.00	
			0.00	
			0.00	

Subpart H minimum payment amounts applies.

	Total Feet	Rate per Foot (\$)	Total Cost (\$)
Total Feet via HSA:	30.00	\$21.44	\$643.20
Total Feet via PUSH:			\$0.00
Total Feet for Injection via PUSH:			\$0.00
	-	Total Drilling Costs:	\$1,429.23

2. Monitoring / Recovery Wells

Number of Wells	Type of Well HSA / PUSH / 4" - 6" Recovery / 8" Recovery	Diameter of Well (inches)	Depth of Well (feet)	Total Feet of Wells to Be Installed (\$)
	Trecovery o Trecovery			0.00
				0.00
				0.00
				0.00

Well Installation	Total Feet	Rate per Foot (\$)	Total Cost (\$)
Total Feet via HSA:	·		\$0.00
Total Feet via PUSH:			\$0.00
Total Feet of 4" or 6" Recovery:			\$0.00
Total Feet of 8' or Greater Recovery:	_		\$0.00
		Total Well Costs:	\$0.00

· · · · · · · · · · · · · · · · · · ·	
Total Drilling and Monitoring Well Costs:	\$1,429.23

Analytical Costs Form

Laboratory Analysis	Number of Samples		Cost (\$) per		Total per Parameter
Chemical Analysis			Analysis		Parameter
BTEX Soil with MTBE EPA 8260	32	Х	\$101.24	II	\$3,239.68
BTEX Water with MTBE EPA 8260	9	X	\$96.48	II	\$868.32
COD (Chemical Oxygen Demand)		X	\$32.71	II	\$0.00
Corrosivity		Х	\$16.36	II	\$0.00
Flash Point or Ignitability Analysis EPA 1010		Х	\$35.99	II	\$0.00
Fraction Organic Carbon Content (f _{oc}) ASTM-D 2974-00		Х	\$41.44	=	\$0.00
Fat, Oil, & Grease (FOG)		×	\$65.43	=	\$0.00
LUST Pollutants Soil - analysis must include volatile, base/		х	\$755.72	=	\$0.00
neutral, polynuclear aromatics and metals list in Section 732.	.				1
Appendix B and 734. Appendix B.]				
Dissolved Oxygen (DO)		х	\$26.17	=	\$0.00
Paint Filter (Free Liquids)		х	\$15.27	=	\$0.00
PCB / Pesticides (combination)		х	\$37.08	=	\$0.00
PCBs	1	х	\$165.76	=	\$0.00
Pesticides		×	\$165.76	=	\$0.00
pH	1	×	\$15.27	=	\$0.00
Phenol	1	х	\$37.08	=	\$0.00
Polynuclear Aromatics PNAs or PAH SOIL EPA 8270	32	×	\$181.04	=	\$5,793.28
Polynuclear Aromatics PNA, PAH WATER EPA 8270	9	×	\$181.04	=	\$1,629.36
Reactivity		×	\$74.15	=	\$0.00
SVOC - Soil (Semi-Volatile Organic Compounds)	1	×	\$341.33	=	\$0.00
SVOC - Water (Semi-Volatile Organic Compounds)		Х	\$341.33	=	\$0.00
TKN (Total Kjeldahl) "nitrogen"		х	\$47.98	=	\$0.00
TPH (Total Petroleum Hydrocarbons)		х	\$133.04	=	\$0.00
VOC (Volatile Organic Compound) - Soil (Non-Aqueous)		х	\$190.84	=	\$0.00
VOC (Volatile Organic Compound) - Water		х	\$184.29	=	\$0.00
	1	х	i .	=	\$0.00
	†	х		=	\$0.00
	1	×		=	\$0.00
	1	х	j	=	\$0.00
		х		=	\$0.00
Geo-Technical			•		
Bulk Density (p _b) ASTM D4292 / D2937	1	Х	\$23.99	=	\$0.00
Ex-Situ Hydraulic Conductivity / Permeability	+ +	X	\$278.08	=	\$0.00
Moisture Content (w) ASTM D2216-90 / D4643-87	+ +	X	\$13.09	=	\$0.00
Porosity	+ +	^	\$32.71		\$0.00
Rock Hydraulic Conductivity Ex-Situ	+ +	x	\$381.67	=	\$0.00
Sieve / Particle Size Analysis ASTM D422-63 / D1140-54	+ +	×	\$158.12	=	\$0.00
Soil Classification ASTM D2488-90 / D2487-90	+ +	^	\$74.15	=	\$0.00
Soil Particle Density (p _s) ASTM D854-92	+ +		Ψ, 4, 10	=	\$0.00
Our Familie Deliany (Ps) Ao HVI D004-92	 - 	<u> </u>	<u> </u>	<u> </u>	1
	 	<u> </u>	 	=	\$0.00
	1	X	 	=	\$0.00
	1	X	<u> </u>	=	\$0.00

Analytical Costs Form

Metals Analysis					
Soil preparation fee for Metals Soil TCLP (one fee per soil sample)		х	\$86.15	=	\$0.00
Soil preparation fee for Metals Total Soil (one fee per soil sample)		$\frac{\hat{x}}{x}$	\$17.45	=	\$0.00
Water Preparation fee for Metals in Water (one fee per water sample)		x	\$12.00	=	\$0.00
					70.00
Arsenic TCLP Soil		×	\$17.45	=	\$0.00
Arsenic Total Soil		х	\$17.45	=	\$0.00
Arsenic Water		Х	\$19.63	=	\$0.00
Barium TCLP Soil		Х	\$10.90	=	\$0.00
Barium Total Soil		х	\$10.90	=	\$0.00
Barium Water		Х	\$13.09	=	\$0.00
Cadmium TCLP Soil		х	\$17.45	=	\$0.00
Cadmium Total Soil		Х	\$17.45	=	\$0.00
Cadmium Water		Х	\$19.63	=	\$0.00
Chromium TCLP Soil		Х	\$10.90	=	\$0.00
Chromium Total Soil		Х	\$10.90	=	\$0.00
Chromium Water		Х	\$13.09	=	\$0.00
Cyanide TCLP Soil		х	\$30.53	=	\$0.00
Cyanide Total Soil		Х	\$37.08	=	\$0.00
Cyanide Water		х	\$37.08	=	\$0.00
Iron TCLP Soil		х	\$10.90	=	\$0.00
Iron Total Soil		х	\$10.90	=	\$0.00
Iron Water		х	\$13.09	=	\$0.00
Lead TCLP Soil		х	\$17.45	=	\$0.00
Lead Total Soil		х	\$17.45	=	\$0.00
Lead Water		х	\$19.63	=	\$0.00
Mercury TCLP Soil		Х	\$20.72	=	\$0.00
Mercury Total Soil		х	\$10.90	=	\$0.00
Mercury Water		×	\$28.35	=	\$0.00
Selenium TCLP Soil		х	\$17.45	=	\$0.00
Selenium Total Soil		Х	\$17.45	=	\$0.00
Selenium Water		х	\$16.36	=	\$0.00
Silver TCLP Soil		Х	\$10.90	=	\$0.00
Silver Total Soil		х	\$10.90	=	\$0.00
Silver Water		х	\$13.09	=	\$0.00
Metals TCLP Soil (a combination of all RCRA metals)		х	\$112.32	=	\$0.00
Metals Total Soil (a combination of all RCRA metals)		х	\$102.51	=	\$0.00
Metals Water (a combination of all RCRA metals)		X	\$129.77	=	\$0.00
	- · · · · · · · · · · · · · · · · · · ·				
Other	<u></u>				
EnCore Sampler, purge-and-trap sampler or equivalent		ı			ī
sampling device	32	х	\$11.91	=	\$381.12
Sample Shipping per sampling event		Х	\$54.52	=	\$0.00

¹A sampling event, at a minimum, is all samples (soil and groundwater) collected in a calendar day.

Total Analytical Costs:	\$11,911.76

Remediation and Disposal Costs Form

A. Conventional Technology

Excavation, Transportation, and Disposal of contaminated soil and/or the 4-foot backfill material removal during early action activities:

Number of Cubic Yards	Cost per Cubic Yard (\$)	Total Cost
1,185	\$67.89	\$80,449.65

Backfilling the Excavation:

Number of Cubic Yards	Cost per Cubic Yard (\$)	Total Cost
1,185	\$23.82	\$28,226.70

Overburden Removal and Return:

Number of Cubic Yards	Cost per Cubic Yard (\$)	Total Cost
		\$0.00

B. Alternative Technology

Alternative Technology Selected:		
Number of Cubic Yards of S	oil to Be Remediated	
Total Non-Consulting Persor	nnel Costs Summary Sheet (\$	
Total Remediation Materia	ls Costs Summary Sheet (\$)	
Total Cost of the System		

Remediation and Disposal Costs Form

C. Groundwater Remediation and/or Free Product Removal Sys
--

Total Non-Consulting Personnel Co	sts Summary Sheet (\$)	
Total Remediation Materials Costs	Summary Sheet (\$)	
Total Cost of the System		·
undwater and/or Free Product Remov	val and Disposal	
Subpart H minimum payment amou	nt applies.	
Number of Gallons	Cost per Gallon (\$)	Total Cost (\$)
		\$0.00
Number of Drums of Liquid Waste	Cost Per Drum (\$)	Total Cost (\$)
Total Drum Disc	posal Costs	\$0.00
Total Drum Disp	oosal Costs	\$0.00

UST Removal and Abandonment Costs Form

Product Stored in UST	Size (gallons)	Abandoned or Removed	Cost (\$)	Did UST have a release?
				Yes No
				Yes No
				Yes No
	· · · · · · · · · · · · · · · · · · ·			Yes No
				Yes No
			···········	Yes No
				Yes No
		۰		Yes No
				Yes No

Total UST Re	moval and Abandonment Costs:	\$0.00

Paving, Demolition, and Well Abandonment Costs Form

A. Concrete and Asphalt Placement/Replacement

Number of Square Feet	Asphalt or Concrete	Thickness (inches)	Cost (\$) per Square Foot	Replacement or Placement for an Engineered Barrier	Total Cost
3,200	Concrete	6	\$5.20	replacement	\$16,640.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00
					\$0.00

Total Concrete and Asphalt	
Placement/Replacement Costs:	\$16,640.00

B. Building Destruction or Dismantling and Canopy Removal

Item to Be Destroyed, Dismantled, or Removed	Unit Cost (\$)	Total Cost (\$)
		\$0.00
		\$0.00
		\$0.00
		\$0.00
		\$0.00
		\$0.00
		\$0.00
		\$0.00

Total Building Destruction or Dismantling and	
Canopy Removal Costs:	\$0.00

Paving, Demolition, and Well Abandonment Costs Form

C. Well Abandonment

Monitoring Well ID #	Type of Well (HSA / PUSH / Recovery)	Depth of Well (feet)	Cost (\$) per foot	Total Cost
				
<u> </u>				
		<u> </u>		

Total Monitoring Well Abandonment Costs:	\$0.00
Total Paving, Demolition, and Well Abandonment Costs:	\$16,640.00

Consulting Personnel Costs Form

Employee Name		Personnel Title*	Hours	Rate *	Total \$		
Remediation Category		Task					
Allan Green		Senior Project Manager	120.00	\$119.11	\$14,293.20		
CCAP/CCAP-Budget		CA project oversight, plan	ning, permil	ts, subcontra	actors		
Andrew Fetterolf		Project Manager	120.00	\$107.20	\$12,864.00		
CCAP-Budget/CACR/CA reimb	CA r	eport/budget preparation/CA	ACR prepara	ation/CA rei	mbursement		
Andrew Fetterolf		Project Manager	160.00	\$107.20	\$17,152.00		
CCA-Field	C	off-site soil borings/excavation	on oversight	/sample pre	paration		
Penny Silzer	Senior Prof. Geologist	30.00	\$131.02	\$3,930.60			
CCA-Field		CA/tank removal/excavation oversight					
Andrew Fetterolf		Senior Scientist	20.00	\$101.24	\$2,024.80		
CCA-Field		purge and sample monitoring wells, sample prep					
Gaye Lynn Green	_	Senior Admin. Assistant	20.00	\$53.60	\$1,072.00		
CCAP-Budget/CACR/CA reimb format, finalize, copy and bind all reports, correspondence, fil				ence, filing			
Gaye Lynn Green		Senior Acct. Technician	20.00	\$65.50	\$1,310.00		
CCAP-Budget/CACR/CA reimb		CA reimburseme	ents, billing,	invoices			
Penny Silzer		Senior Prof. Geologist	8.00	\$131.02	\$1,048.16		
CCAP-Budget/CA reimb CA report/reimb. review and certification *Refer to the applicable Maximum Payment Amounts document.							

Fotal of Consulting Personnel Costs

\$53,694.76

¹⁸

Consultant's Materials Costs Form

Consulting Materials Costs:

Materials, Equipment, or Field Purchases		Time or Amount Use	Rate (\$)	Units	Total Cost
Remediation Category	Description/Justification				
Company Vehicle Mileage		2160.00	\$0.55	/mile	\$1,188.00
CA-Field	site visits/mobilization to & from site for excavation/drilling (twelve 180 mile round trips)				
Photoionization Detector		12.00	\$100.00	/day	\$1,200.00
CA-Field	field screening of samples				
Well Sampl	ling Equipment	2.00	\$25.00	/day	\$50.00
CA-Field	groundwater sampling equipment				
					\$0.00
	····				\$0.00
				:	\$0.00
					\$0.00
					\$0.00

Total Consultant's Material's Costs: \$2,438.00

Owner/Operator and Hingusted Brotes signal Engineer (% 2) 2) 2) Set Budget Certification Form

I hereby certify that I intend to seek payment from the UST Fund for costs incurred while performing corrective action activities for Leaking UST incident
Costs associated with ineligible tanks.
Costs associated with site restoration (e.g., pump islands, canopies).
Costs associated with utility replacement (e.g., sewers, electrical, telephone CEIVED
Costs incurred prior to Internal tout audion.
Costs associated with planned tank pulls. Legal fees or costs. JUL 0 8 2013
·
Costs incurred prior to July 28, 1989. Costs associated with installation of new USTs or the repair of existing USTs. EPA/BOL
Owner/Operato Freedom Oil Company
Authorized Representative: Mr. Mark Eckhoff Title: V.P., Store Operations
Signature:
Subscribed and sworn to before me the
In addition, I certify under penalty of law that all activities that are the subject of this plan, budget or report were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan, budget, or report and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in the plan, budget, or report has been completed in accordance with the Environmental Protection Act [415 ILCS5], 35 III. Adm. Code 732-734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements of the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 1960-000256. L.P.E./L.P.G. Seal: L.P.E./L.P.G. Seal: Description of the subject of this plan, budget, or report and all attachments were properties. The plan, budget, or report and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were properties and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were prepared under my supervision. It is plan, budget, or report and all attachments were properties and all attachments were pro
L.P.E./L.P.G. Signature: Date: Date: Date: Subscribed and sworn to before me the 15th day of 14/4
The Illinois EPA is authorized to require this information under 415 ILCS 5/1. Disclosure of this information is

0177

required. Failure to do so may result in the delay or denial of any budget or payment requested hereunder.

Electronic Filing: Received, Clerk's Office 1/6/2021 Office of the Illinois State Fire Marshal

"Partnering With the Fire Service to Protect Illinois"

CERTIFIED MAIL - RECEIPT REQUESTED #7008 0150 0003 4726 7673

August 7, 2008

Freedom Oil Company 814 W. Chestnut St. Bloomington, IL 61701

In Re:

Facility No. 4-016556

IEMA Incident No. 08-0255.

Freedom Oil #32 1406 N. Prospect

Champaign, Champaign Co., IL

Dear Applicant:

The Reimbursement Eligibility and Deductible Application received on July 3; 2008 for the above referenced occurrence has been reviewed. The following determinations have been made based upon our review.

It has been determined that you are eligible to seek payment of costs in excess of \$10,000. The costs must be in response to the occurrence referenced above and associated with the following tanks:

Eligible Tanks

Tank I	6,000 gallon Diesel Fuel
Tank 2	10,000 gallon Gasoline
Tank 3	6,000 gallon Gasoline
Tank 4	6,000 gallon Gasoline
Tank 5	2,000 gallon Gasoline

You must contact the Illinois Environmental Protection Agency to receive a packet of Agency billing forms for submitting your request for payment.

An owner or operator is eligible to access the Underground Storage Tank Fund if the eligibility requirements are satisfied:

- 1. Neither the owner nor the operator is the United States Government,
- The tank does not contain fuel which is exempt from the Motor Fuel Tax Law,
- The costs were incurred as a result of a confirmed release of any of the following substances:

"Fuel", as defined in Section 1.19 of the Motor Fuel Tax Law

Aviation fuel

Heating oil

Kerosene

Used oil, which has been refined from crude oil used in a motor vehicle, as defined in Section 1.3 of the Motor Fuel Tax Law.

- 4. The owner or operator registered the tank and paid all fees in accordance with the statutory and regulatory requirements of the Gasoline Storage Act.
- 5. The owner or operator notified the Illinois Emergency Management Agency of a confirmed release, the costs were incurred after the notification and the costs were a result of a release of a substance listed in this Section. Costs of corrective action or indemnification incurred before providing that notification shall not be eligible for payment.
- 6. The costs have not already been paid to the owner or operator under a private insurance policy, other written agreement, or court order.
- The costs were associated with "corrective action".

This constitutes the final decision as it relates to your eligibility and deductibility. We reserve the right to change the deductible determination should additional information that would change the determination become available. An underground storage tank owner or operator may appeal the decision to the Illinois Pollution Control Board (Board), pursuant to Section 57.9 (c) (2). An owner or operator who seeks to appeal the decision shall file a petition for a hearing before the Board within 35 days of the date of mailing of the final decision, (35 Illinois Administrative Code 105.102(a) (2)).

For information regarding the filing of an appeal, please contact:

Dorothy Gunn, Clerk Illinois Pollution Control Board State of Illinois Center 100 West Randolph, Suite 11-500 Chicago, Illinois 60601 (312) 814-3620

The following tanks are also listed for this site:

Tank 6 10,000 gallon Diesel Fuel Tank 7 8,000 gallon Gasoline Tank 8 12,000 gallon Gasoline

Your application indicates that there has not been a release from these tanks under this incident number. You may be eligible to seek payment of corrective action costs associated with these tanks if it is determined that there has been a release from one or more of these tanks. Once it is determined that there has been a release from one or more of these tanks you may submit a separate application for an eligibility determination to seek corrective action costs associated with this/these tanks.

If you have any questions, please contact our Office at (217) 785-1020 or (217) 785-5878.

Sincerely,

Deanne Lock

Administrative Assistant

Division of Petroleum and Chemical Safety

cc:

IEPA

Facility File

45-DAY REPORT TIER 1 OBJECTIVES COMPLIANCE REPORT

SHREE KUBER, INC 1406 N. PROSPECT CHAMPAIGN, ILLINOIS 61820 CHAMPAIGN COUNTY LUST INCIDENT #20200005 LPC # 0190105433

> Prepared for: Shree Kuber, Inc. 1406 N. Prospect Champaign, IL 61820

> > Prepared by:

Green Wave Consulting, LLC 4440 Ash Grove Drive, Suite A Springfield, IL 62711

March 16, 2020

Jeff Wienhoff, P.E.

Senior Professional Engineer

Mike Bettenhausen Senior Project Manager

TABLE OF CONTENTS

45-]	DAY REPORT	PAGE
A.	Site Identification	1
В.	Release Information	1
C.	Early Action	1
D.	Site/Release Information	2
E.	Supporting Documentation	6
F.	Early Action Tier 1 Remediation Objectives Compliance Report	8
G.	Signatures	8

FIGURES

- 1. Surrounding Land Usage Map
- 2. Site Area Features Map
- 3. Tank Cavity Cross Section Map
- 4. Water Well Survey Map

TABLES

- I. Summary of PID Results
- II. Summary of Soil Analytical Results

ATTACHMENTS

- 1. UST Removal Permit
- 2. Photographic Log of Field Activity
- 3. Laboratory Reports
- 4. Waste Disposal Documentation
- 5. SWAP Database Documents
- 6. Property Owner Summary Form
- 7. IEPA 45-Day Report Form

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57-57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a class 3 felony (415 ILCS 5/57.17). This form has been approved by the Forms Management Center.

Illinois Environmental Protection Agency Leaking Underground Storage Tank Program 45 Day Report

A. Site Ide	entification				
IEMA Incid	dent # (6 digits): 20200	0005	_ IEPA LPC # (10 digi	ts):0190	105433
	Shree Kuber, In		·	,	
Site Addres	SS (Not a P.O. Box):1	406 N. Prosp	pect		
City: <u>Cha</u>	mpaign	Cou	nty: <u>Champaign</u>	ZIP Code:_	61820
_	ST Technical File			Yes 🗌 No 🔀	
UST Volume (Gallons)	Material Stored in UST	Release (Yes/No)	Type of Release (Tank Leak) (Overfill) (Piping Leak)	Removed?	(Repaired) (Removed) (Abandoned)
10,000	Diesel Fuel	Yes	Tank Leak/Overfill / Piping Leak	Yes	Removed
remed	this report demons liation objectives h ree product encour	ave been mo ntered?			
Free P remov	-	oort (form Li for more that	PC 504). If free prod an 45 days, a free pro		

submitted (form LPC 504).

3.	Have any fire or safety hazards posed by vapors or free product or contamination to a potable water supply been identified?	Yes 🗌 No 🔀
4.	What was the volume of backfill material excavated?	209.8 yds ³
5.	What was the volume of native soil excavated?	<u>0.0</u> yds
6.	Was groundwater encountered at the site?	Yes 🗌 No 🖂
7.	Did the groundwater exhibit a sheen?	Yes 🗌 No 🗌

D. Site/Release Information

Provide the following:

1. Data on the nature and estimated quantity of the release;

The investigation site is the Shree Kuber, Inc. – Prospect Mini Mart station located at 1406 N. Prospect Ave. in Champaign, Champaign County, Illinois. **Figure 1** displays the surrounding land usage and **Figure 2** displays the entire subject parcel that is subject to IEMA 20200005. The site is currently an active convenience store undergoing property redevelopment.

During a limited subsurface investigation, hydrocarbon impacted soil was found surrounding the diesel underground storage tank (UST) system. The investigation indicated a petroleum release around the USTs system through soil sampling. A release was reported to the Illinois Emergency Management Agency (IEMA) on January 3, 2020 and received Leaking Underground Storage Tank (LUST) incident number 20200005 concerning this release incident. This 45 Day Report is submitted to include documentation of all Early Action activities completed in response to release 20200005.

The release incident is for one (1) 10,000-gallon capacity gasoline UST diesel fuel UST and associated product piping. This 45-Day Report has been prepared for the Shree Kuber, Inc. – Prospect Mini Mart site (Prospect Mini Mart) to document the Early Action activities conducted to date regarding the release. Although a release was confirmed, the quantity of the release is not known at this time.

2. Data from available sources or site investigations concerning the following factors:

a. Surrounding populations;

The site is located at 1406 N. Prospect Ave. in Champaign, Illinois. The site is currently an active/operating convenience store and gas station undergoing property redevelopment. The site is located within the city limits of the City of Champaign and is surrounded by light commercial properties. Bordering the subject site to the north is a commercial property which includes several small businesses. Several commercial

properties border the subject site to the East. Prospect Ave (IL Route 150) followed by several commercial properties, border the site to the west. A vacant commercial property borders the site directly to the south.

b. Water quality;

Based on information from the IEPA Source Water Assessment Program (SWAP) factsheet and the Safe Drinking Water Information System (SDWIS), the Illinois American Water Company-Champaign (Facility Number 0195300) obtains its water from 22 community water supply wells. Wells #35, #40, #41, #42, #43, #45, #46, #47, #53, #54, #55, #56, #57, #58, #59, #60, #61, #62, #63, #64, #65, and #66 (Illinois EPA #45065, #46067, #45068, #45069, #45070, #45072, #45073, #45074, #45075, #45076, #45077, #45078, #45079, #45080, #45081, #45082, #45083, #45084, #00255, #00864, #01102, and #01336 respectively) provide an average of 21.3 million gallons per day to 45,990 direct services and 6,100 satellite services or a population of 141,000.

c. Use and approximate locations of wells potentially affected by the release;

During the Early Action field activities, no water supply wells were identified utilizing a visual search of the area.

The SWAP database was researched to identify potable wells within 2,500' of the site. According to the database, the well logs were available for eighteen (18) wells drilled within the search radius. Fifteen (15) of the well logs were for engineering or monitoring test wells. The remaining three (3) wells were potable wells. None of the potable wells setbacks extended with within 200' of the release area. The well results are summarized and illustrated within **Figure 4**. The SWAP database files are located in **Attachment 5**.

d. Subsurface Soil Conditions;

The subsurface investigation conducted as part of early action activities noted soils encountered beyond the sand backfill materials consisting of predominantly silty clay.

e. Location of subsurface sewers;

The sewer service for the station building exits the east side of the building and connects to the main running north and south along the eastern property line. There is also a storm sewer running along Prospect Ave right-of-way adjacent to the site's west property boundary.

f. Climatological conditions;

Weather conditions during the USTs removal were generally seasonal (temperature in the low 30s) with light variable winds and no precipitation. The weather conditions had no impact on early action activities associated with the USTs removal at this site.

Land use;

The site is currently an active convenience store undergoing renovations. Concrete, asphalt and rock cover the majority of the property with areas of grass near the property boundaries and right-of-ways. The surrounding area is a mix several light commercial properties.

3. A discussion of what was done to measure for the presence of a release where contamination was most likely to be present at the UST site;

Green Wave Consulting, LLC (GWC) personnel observed and documented early action activities. After removal of the impacted backfill materials, GWC obtained a total of twelve (12) soil confirmation samples from the sidewalls, floor and piping trench of the soil excavation area. The confirmation samples generally displayed visual and olfactory indications of hydrocarbon impaction. The backfill exhibited moderate staining, with the remaining walls, floor and trenching exhibiting areas of light to moderate staining and odor. The soil sample locations and cross-section map showing approximate sample depths are presented in **Figures 2 and 3**.

Sampling personnel wore disposable latex sampling gloves during each soil sample collection procedure. Portions of the soil sample from each of the selected locations were placed into zipper locking bags and sealed. The soil was broken up within each bag to help increase the surface area for volatilization. A probe tip of a field portable photoionization detector (PID) was then inserted through the seal to measure for the presence of organic vapors in the headspace of the bags.

Concentrations were measured and are reported in parts-per-million (ppm) meter units. PID screening results along with sample depths for the Early Action soil confirmation samples are displayed in **Table I** in the tables section of this report. The soil had areas of obvious odor and staining, with all twelve (12) samples with screening results on the PID above 1 ppm. PID results ranged from 1.8 part per million-meter units in soil sample CS-8 to 182 ppm meter units in soil samples CS-6 and CS-11.

Additional portions of soil from each confirmation soil sample location were placed into laboratory approved jars using Method 5035A procedures. The sample jars were stored in a cooler on ice, were properly preserved, and then received by an IEPA accredited laboratory for confirmation analysis.

Pursuant to 35 Illinois Administrative Code (IAC) Section 734.405, the indicator contaminants for the diesel fuel UST associated with this release shall be benzene, toluene, ethylbenzene, xylenes (BTEX) and polynuclear aromatics (PNAs).

The confirmation soil samples were received by PDC Laboratories, Inc. in Springfield, Illinois under a properly completed/signed chain-of-custody form for laboratory analysis.

The analytical testing procedures were performed in accordance with IEPA and SW-846 protocols. The appropriate parameter testing results for the soil confirmation samples are presented in **Table II**. A copy of the laboratory reports and signed chain-of-custody and laboratory certification forms is presented in **Attachment 3**.

As displayed in **Table II**, none of the twelve (12) confirmation soil samples collected displayed concentrations above the corresponding most stringent Illinois Environmental Protection Agency (IEPA), Tiered Approach to Clean-up Objectives (TACO) Tier 1 Soil Remediation Objectives (SROs).

4. Results of the free product investigations;

Free product was not encountered during the early action investigation.

5. A discussion of the action taken to prevent further release of the regulated substance into the environment;

The source of contamination; one (1) 10,000-gallon capacity diesel fuel UST and associated product piping have been removed, cleaned/crushed and were transported to along with the contaminated backfill for proper disposal. The crushed tank and contaminated backfill materials were transported and properly disposed of at PDC Clinton Landfill, Inc. in Clinton, IL.

6. A discussion of the action taken to mitigate fire and safety hazards posed by vapors or free product that have migrated from the UST excavation zone and entered subsurface structures;

Subsurface features were screened with a Photo Ionization Detector (PID) before, during, and after the fueling system removal and no detectable concentrations of volatile organic compounds were identified.

7. Any other information collected while performing initial abatement measures pursuant to 35 Ill. Adm. Code 731.162, 732.2025(b) or 734.210(b).

The abatement measures included the removal of the tank under the supervision of the OSFM STSS representative. After removal of the impacted soils, twelve (12) soil confirmation samples were collected and submitted to an accredited laboratory for appropriate analysis.

E. Supporting Documentation

Provide the following:

1. An area map showing the site in relation to surrounding properties;

A Surrounding Land Usage map and a site area features map showing the site in relation to surrounding properties is presented in the report as **Figures 1 and 2**. The facilities on the surrounding properties are identified on the maps.

2. A cross section, to scale, showing the UST(s) and the excavation;

A cross-section map is presented in the report as **Figure 3**.

3. Analytical/screening results in tabular format including the results of soil samples required pursuant to 35 Ill. Adm. Code 732.202(h) or 734.210(h) and the most stringent Tier 1 remediation objectives;

Screening results are included in **Table I** and analytical results are summarized in **Table II** in the Tables section of this report and laboratory reports are presented in **Attachment 3**.

4. Site map meeting the requirements of 35 Ill. Adm. Code 732.110(a) or 734.440 and including sample locations;

Please see the **Figures** section of the report.

5. Soil Boring Logs

No soil borings were completed as part of early action activities.

- 6. Chain of Custody Forms Certifications;
- 7. Laboratory Analytical Reports;
- 8. Laboratory Certifications;

Chain of Custody Forms, Laboratory Analytical Reports & Certifications are included in this report as **Attachment 3**.

9. A copy of the Office of the Illinois State Fire Marshal Permit for Removal, Abandonment-In-Place, or other OSFM permits or notifications;

The OSFM UST Removal Permit documentation is presented in **Attachment 1**.

10. A narrative of tank removal and cleaning operations; describe how wastes generated during the tank removal were managed, treated, and disposed of;

On January 21, 2020, Earth Services initiated the removal of the dispensers and uncovering of the UST. On January 22, 2020, Earth Services continued the completed uncovering the UST and vented the one (1) 10,000-gallon capacity UST of vapors. GFL Environmental (Mokena, IL) was onsite and pumped down 3,000 gallons of residual fuel/water from the UST and visible impacted water from the tank pit. The one (1) 10,000-gallon diesel UST was removed cut/cleaned and properly disposed of under the supervision of OSFM representative Storage Tank Safety Specialist, Mr. Bruce Billman who witnessed and observed the UST system removal activities. Photographs of the UST removal and subsequent Early Action soil remediation activities can be found in **Attachment 2**.

The UST removal activities were initiated by fully uncovering the UST system. The tank was vented of flammable vapors through the eduction process. Contractor personnel tested the interior atmosphere of the tanks to ensure that the lower explosive limit levels were less than 5% before proceeding with tank removal. Upon approval from the OSFM inspector, the tank was removed from the ground and prepared for inspection and cleaning. Access holes allowed ventilation and reintroduction of breathable air to the USTs. Product piping was also removed from the subsurface.

During the UST removal activities, Mr. Bruce Billman confirmed obvious indications of a release with visual and olfactory indications of contaminated soils in the excavation.

The interior tank cleaning process entailed the removal of remaining petroleum residue and any residual product. The remaining residue materials were properly removed. An oil dry absorbent material was spread throughout the tank interiors to absorb any residual product. The remaining materials were removed with a shovel and placed into a 55-gallon drum outside the tanks and were disposed of along with the impacted soils during Early Action excavation activities. The OSFM representative observed obvious signs of hydrocarbon contaminated soils associated with the reported 20200005 incident number for the tank system release. The cleaned and crushed tank was loaded and transported off-site for proper landfill disposal at PDC Landfill in Clinton, IL.

Following the removal of the UST, Early Action soil remediation activities were conducted. The project was initiated with the removal of backfill soils from the cavity within four (4) feet of the former 10,000-gallon capacity diesel fuel UST. The backfill soils displayed moderate hydrocarbon odors and staining. The results are included in **Attachment 3**. A total of 314.7 tons (209.8 cu. yds) of impacted soils were removed and loaded onto trucks for proper off-site disposal. The remaining native sidewalls and floor of the cavity had areas which displayed light to moderate signs of remaining hydrocarbon impaction, but all confirmation sample results were below the applicable Tier I objectives.

The impacted soils were transported using proper waste manifests to PDC Landfill located in Clinton, Illinois, for disposal. Copies of the soil disposal forms can be found in **Attachment 4**.

11. Photographs of UST removal activities and the excavation;

Photographs of the UST system removal are included as **Attachment 2**.

12. Copies of manifests for soil and groundwater transported off-site.

Copies of the water and soil disposal documents can be found in **Attachment 4**.

F. Early Action Tier 1 Remediation Objectives Compliance Report

If the most stringent Tier 1 remediation objectives of 35 Ill. Adm. Code 742 for the applicable indicator contaminants have not been met and a groundwater investigation is required, in addition to the information provided above, provide the following.

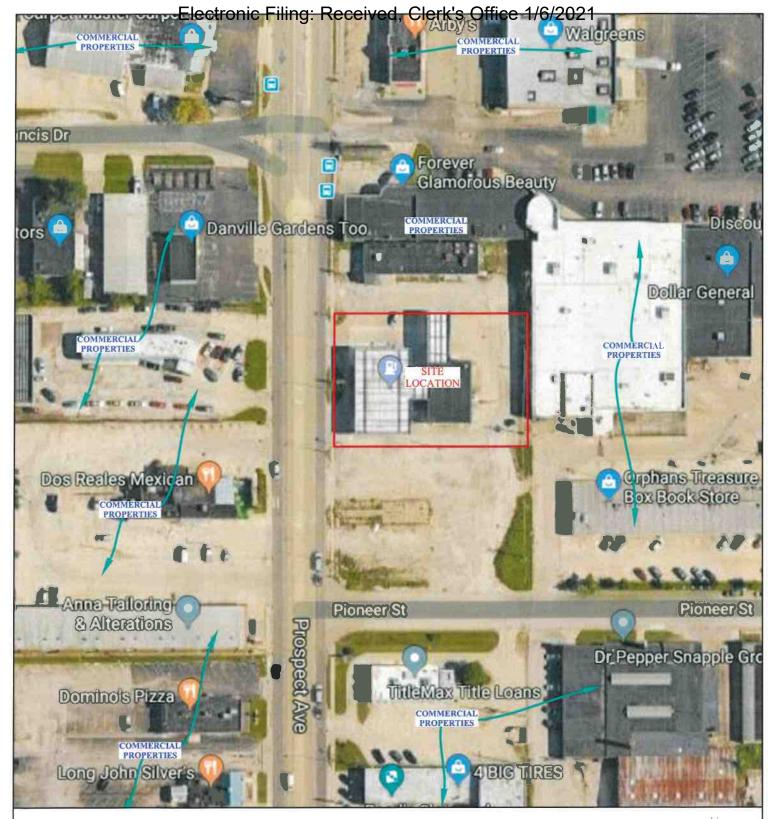
1. Site characterization;

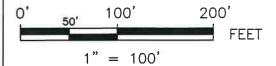
Tier 1 remediation objectives have been met in the samples collected at the extent of the excavation. Visibly impacted water within the UST tank pit was removed and properly disposed of by GFL Environmental. No recharge was noted after the initial visibly contaminated water was removed. Based on the documentation provided in this report, Shree Kuber, Inc. petitions the Illinois EPA to issue a No Further Remediation letter for IEMA 20200005.

2. If water was encountered during the excavation, provide a demonstration pursuant to 35 Ill. Adm. Code 732.202(h)(4)(C) or 734.210(h)(4)(C) that it is not representative of actual groundwater;

Visibly contaminated water was noticeable within the UST excavation area during the removal of the UST. On January 22, 2020 GFL Environmental pumped, transported and properly disposed of a total of 3,000 gallons of residual fuel/water from the UST and visible impacted water from the tank pit. No groundwater recharge was noted when returning January 23, 2020 to complete excavation activities, nor was groundwater recharge noted January 24, 2020 when backfilling activities were completed. No groundwater investigation is proposed as a result of IEMA 20200005.

3. Property Owner Summary (form LPC 568).


The Property Owner Summary Form is included in **Attachment 6**.


G. Signatures

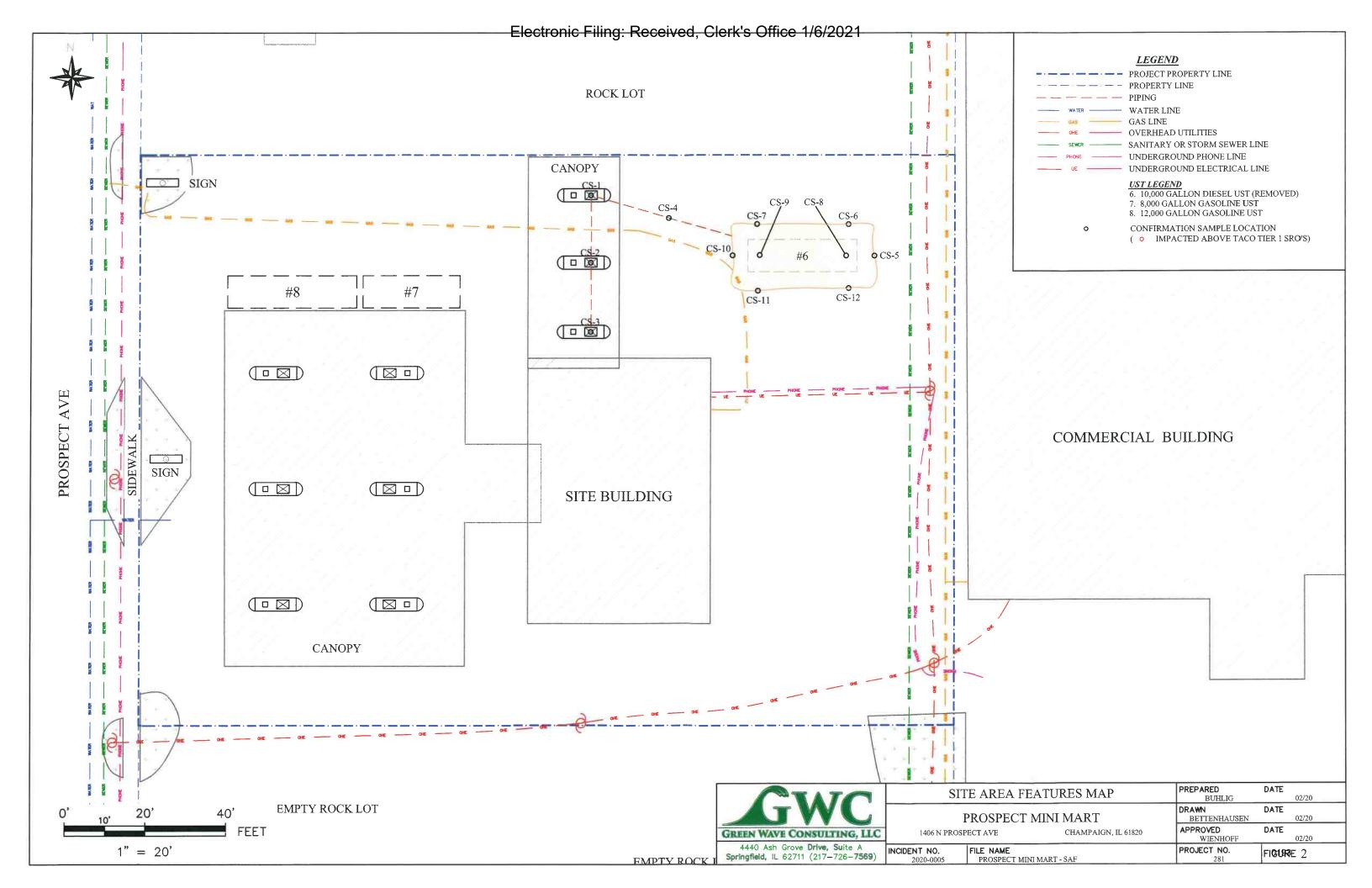
UST Owner or Operator Signature:

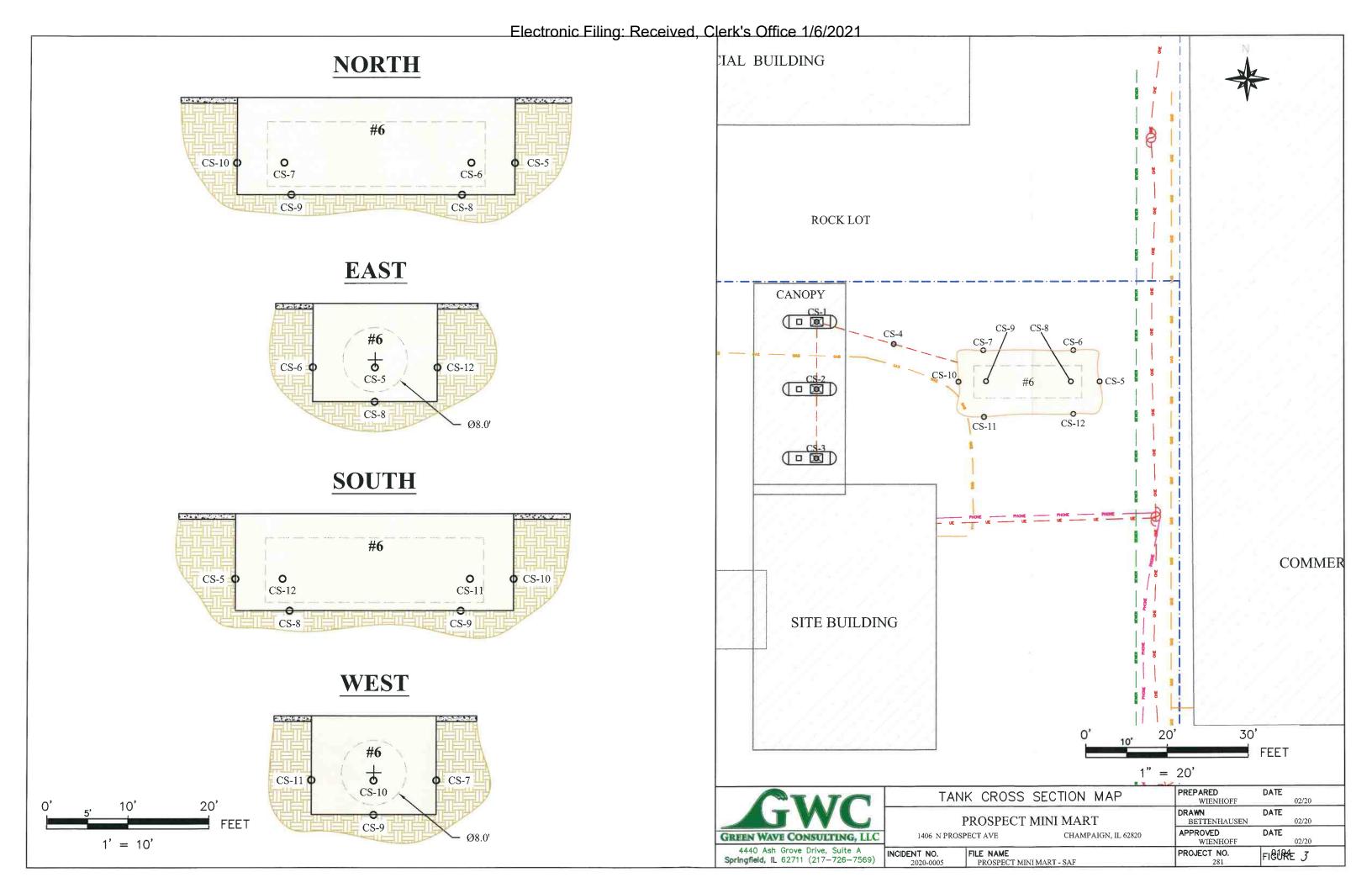
A completed IEPA 45-Day Report Form is included in **Attachment 7**.

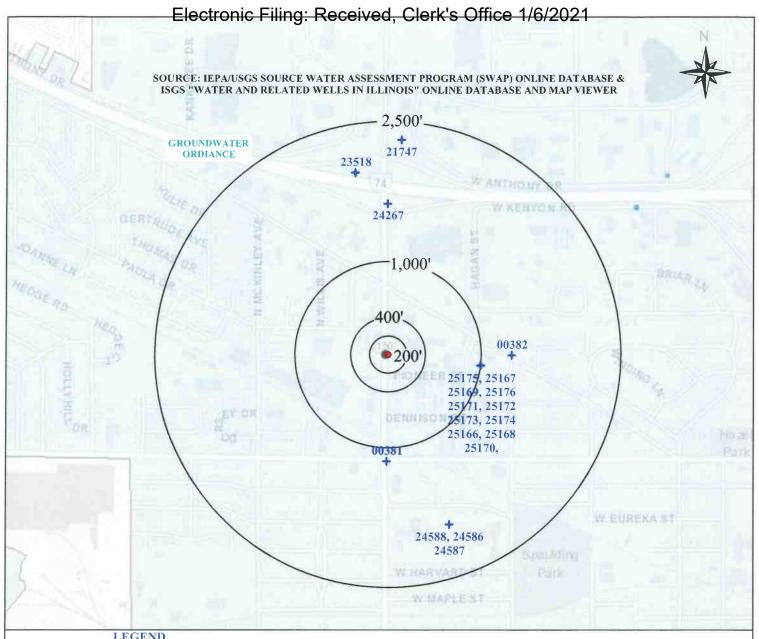
FIGURES

02/20

DATE


PREPARED


BUHLIG


		W		7
GREEN W	VE CO	NSULI	ING,	LLC
AAAO ASH	CPOVE	DRIVE	Smite	A

JWC		PROSPECT MINI	MART	BETTENHAUSEN	DAIL	02/20
GREEN WAVE CONSULTING, LLC	1406 N PRC	DSPECT	CHAMPAIGN, IL 61820	APPROVED WIENHOFF	DATE	02/20
4440 ASH GROVE DRIVE, Suite A Springfield, IL 62711 (217-726-7569)	INCIDENT NO. 2020-0005	FILE NAME SHREE KUBER - SLUM		PROJECT NO. 281	FIGUR	Æ 1

SURROUNDING LAND USE MAP

LEGEND

+ ISGS WELL

Key to ISGS Wells within 2.500'	of Site

Well ID #	Setback Zone	Approximate Distance to UST Release Area	Depth	Well Status / Owner
ISGS #25175	N/A	1.000'	15'	Monit / Wareco Service
ISGS #25167	N/A	1,000'	15'	Monit / Wareco Service
ISGS #25169	N/A	1,000	15'	Monit / Wareco Service
ISGS #25176	N/A	1,000	15'	Monit / Wareco Service
ISGS #25171	N/A	1.000'	15'	Monit / Wareco Service
ISGS #25173	N/A	1,000'	15'	Monit / Wareco Service
ISGS #25174	N/A	1.000'	15'	Monit / Wareco Service
ISGS #25166	N/A	1,000'	15'	Monit / Wareco Service
ISGS #25168	N/A	1.000'	15'	Monit / Wareco Service
ISGS #25170	N/A	1,000'	15'	Monit / Wareco Service
ISGS #00381	N/A	1.145*	165'	Water / University of Himois
ISGS #00382	N/A	1.324'	200'	Water / Ill Water Service
ISGS #24267	N/A	1.614'	34'	ENG / FA 39
ISGS #24588	N/A	1.938'	15'	Mons/Amoco Oil Co.
ISGS #24586	N/A	1,938	17'	Monit / Amoco Oil Co.
ISGS #24587	N/A	1.938	15'	Monii / Amoco Oil Co.
ISGS #23518	N/A	1.979'	31'	ENG / I-74&Prospect
ISGS #21747	N/A	2.302'	60*	Water / Gray, James

Non-CWS = Non-Community Water Supply

N/A = Not applicable (setback zone does not apply for well type/status)

CWS = Community Water Supply

Note. Wells in over have been abandoned Note Wells in red have been mismapped.

Note: information for CWS1808 wells compiled from the HPA Community Water Supply database information.

Note: On nor information and status obtained from ISGS well logs; may not be current owner of property where well is located.

GWC
GREEN WAVE CONSULTING, LLC
4440 ASH GROVE DRIVE, Suite A Springfield, IL 62711 (217-726-7569)

7	WATER WELL ST	JRVEY	PREPARED BETTENHAUSEN	DATE 02/20
I	PROSPECT MINI	MART	DRAWN BETTENHAUSEN	DATE 02/20
1406 N PRC	DSPECT	CHAMPAIGN, IL 61820	APPROVED WIENHOFF	DATE 02/20
INCIDENT NO. 2020-0005	FILE NAME PROSPECT MINI MART	- WWS	PROJECT NO. 281	FIGUIRE 4

TABLES

Table I Summary of Photoionization Detector Screening Results Shree Kuber, Inc. - 20200005 Champaign, IL 61820

Sample ID	Location	Sample Depth	PID Result
CS-1	Piping	3'	83.5
CS-2	Piping	3'	50.8
CS-3	Piping	3'	49.8
CS-4	Piping	3'	23.8
CS-5	Wall	9'	83.2
CS-6	Wall	9'	182
CS-7	Wall	9'	42.5
CS-8	Floor	13'	1.8
CS-9	Floor	13'	3.6
CS-10	Wall	9'	100
CS-11	Wall	9'	182
CS-12	Wall	9'	3.1

Electropaine Filling in Received in Clerk's Configuration 14/6/2021

Shree Kuber, Inc. Champaign, Illinois Incident #20200005

Sample Name	TIER 1	CS-1	CS-2	CS-3	CS-4	CS-5	CS-6	CS-7
Depth	Remediation	3.0	3.0	3.0	3.0	9.0	9.0	9.0
Sample Date	Objectives	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20
BTEX / MTBE								
Benzene	0.03	ND						
Ethylbenzene	13	0.066	0.021	0.194	ND	ND	ND	ND
MTBE	0.32	ND						
Toluene	12	ND						
Total Xylenes	5.6	ND						
PNA								
Acenaphthene	570	ND						
Acenaphthylene	15	ND						
Anthracene	12000	ND						
Benzo(a)Anthracene	0.9	ND						
Benzo(b)Fluoranthene	0.9	ND						
Benzo(k)Fluoranthene	9	ND						
Benzo(g,h,I)Perylene	2300	ND						
Benzo(a)Pyrene	0.09	ND						
Chrysene	88	ND						
Dibenzo(a,h)Anthracene	0.09	ND						
Fluoranthene	3100	ND						
Fluorene	560	ND						
Indeno(1,2,3-c,d)Pyrene	0.9	ND						
Napthalene	1.8	ND						
Phenanthrene	140	ND						
Pyrene	2300	0.219	0.551	1.360	ND	ND	ND	0.265

Notes: All results are presented in mg/kg Bold /Underlined values indicate exceedance ND: Below Acceptable Detection Limits

NA: Not Analyzed

Electrophice Filling in Received in Charly acoustic filling in Received in Charlest filling in

Shree Kuber, Inc. Champaign, Illinois Incident #20200005

Sample Name	TIER 1	CS-8	CS-9	CS-10	CS-11	CS-12
Depth	Remediation	13.0	13.0	9.0	9.0	9.0
Sample Date	Objectives	1/22/20	1/22/20	1/23/20	1/23/20	1/23/20
BTEX / MTBE						
Benzene	0.03	ND	ND	ND	ND	ND
Ethylbenzene	13	ND	ND	ND	ND	ND
MTBE	0.32	ND	ND	ND	ND	ND
Toluene	12	ND	ND	ND	ND	ND
Total Xylenes	5.6	ND	ND	ND	ND	ND
PNA						
Acenaphthene	570	ND	ND	ND	ND	ND
Acenaphthylene	15	ND	ND	ND	ND	ND
Anthracene	12000	ND	ND	ND	ND	ND
Benzo(a)Anthracene	0.9	ND	ND	ND	ND	ND
Benzo(b)Fluoranthene	0.9	ND	ND	ND	ND	ND
Benzo(k)Fluoranthene	9	ND	ND	ND	ND	ND
Benzo(g,h,I)Perylene	2300	ND	ND	ND	ND	ND
Benzo(a)Pyrene	0.09	ND	ND	ND	ND	ND
Chrysene	88	ND	ND	ND	ND	ND
Dibenzo(a,h)Anthracene	0.09	ND	ND	ND	ND	ND
Fluoranthene	3100	ND	ND	ND	ND	ND
Fluorene	560	ND	ND	ND	ND	ND
Indeno(1,2,3-c,d)Pyrene	0.9	ND	ND	ND	ND	ND
Napthalene	1.8	ND	ND	ND	ND	ND
Phenanthrene	140	ND	ND	ND	ND	ND
Pyrene	2300	ND	ND	ND	0.195	ND

Notes: All results are presented in mg/kg Bold /Underlined values indicate exceedance ND: Below Acceptable Detection Limits

NA: Not Analyzed

ATTACHMENT 1

Office of the Illinois State Fire Marshal Division of Petroleum and Chemical Safety

1035 Stevenson Drive Springfield, IL 62703 2177851020

FOR OFFICE USE ONLY

Facility # 4016556 Permit # 00018-2020REM Request Rec'd 01/06/2020 Amended Date Approval Date 1/6/2020 DS Permit Expires 7/7/2020

Permit for REMOVAL of Underground Storage Tank(s) and Piping for Petroleum and Hazardous Substances.

Permission to remove underground storage tank(s) or piping is hereby granted. Such removal shall not commence until the contractor the permit was issued to or an employee of that contractor (this does not include a subcontractor) shall establish a date certain to perform the UST activity by contacting the Office of the State Fire Marshal, Division of Petroleum and Chemical Safety, at which time the UST activity shall be scheduled. **THIS PERMIT IS VALID FOR SIX MONTHS FROM THE APPROVAL DATE.**

 OWNER OF TANKS - Corporation, partnership, or other business entity:

(2) FACILITY - name and address where tanks are located:

Shree Kuber, Inc. 1406 N. Prospect Champaign, IL 61820 Prospect Mini Mart 1406 N. Prospect Ave. Champaign, IL 61820

Contact: Vijay Pagel (309) 642-0472

Contact: Kishan Abani (217) 398-4930

(3) REMOVAL OF TANKS:

- (a) Number and size of tanks being removed: (TK#6) 10,000
- (b) Description/location of piping being removed:
- (c) Product to be stored in each tank: (TK#6) Diesel Fuel
- (d) Reason of tanks being removed:
- (e) If tank(s) is leaking, indicate IEMA incident number: 2020-0005
- (f) Date each tank was last used: (TK # 6) 12/19/2018
- (4) The owner must notify this Office when completion of tank removal has occurred, on the Notification for Underground Storage Tank Form. This form can be obtained at www.sfm.illinois.gov or by calling (217)785-1020. After removal is completed, the owner/operator shall perform a site assessment by measuring for the presence of a release where contamination is most likely to be present at the UST site. This is in accordance with the Illinois Administrative Code 176.360 (a) regulations and 40 CFR Part 280.72 (a) Federal Register Requirement.
- (5) **SPECIAL CONTINGENCIES**: remove entire ust system, tank and piping

(6) PERSON, FIRM OR COMPANY PERFORMING WORK:

RCRA, Inc. d/b/a Earth Services 10903 Prestwick Drive Benton, IL 62812 Contact Person: Josh Appleton

Phone: (618) 218-4958

Contractor Registration # IL002364 Exp. 8/7/2021

Sincerely,

Daniel Starks

Daniel J. Starke

cc: Storage Tank Safety Specialist Division File

ATTACHMENT 2

PHOTOGRAPHIC LOG

PROJECT: Shree Kuber, Inc. - Champaign IL

DATE: January 2020

VIEW: Northeast

PHOTOGRAPH #: 1

DESCRIPTION: View of tankhold during uncovering process

DATE: January 2020

VIEW: Northwest

PHOTOGRAPH #: 2

DESCRIPTION: View of tankhold during uncovering process

PHOTOGRAPHIC LOG

PROJECT: Shree Kuber, Inc. - Champaign IL

DATE: January 2020

VIEW: North

PHOTOGRAPH #: 3

DESCRIPTION: GFL pumping down residual fuel/liquids from UST

DATE: January 2020

VIEW: North

PHOTOGRAPH#: 4

DESCRIPTION: View of UST removed and preparing to be cut/cleaned

PHOTOGRAPHIC LOG

PROJECT: Shree Kuber, Inc. - Champaign IL

DATE: January 2020

VIEW: East

PHOTOGRAPH #: 5

DESCRIPTION: UST opened and prepared to be cut/crushed and properly disposed of.

DATE: January 2020

VIEW: Northwest

PHOTOGRAPH #: 6

DESCRIPTION: View of UST excavation backfilled and capped with CA-6 rock.

ATTACHMENT 3

PDC Laboratories, Inc.

Friday, January 31, 2020

Jeff Wienhoff

Green Wave Consulting, LLC 4440 Ash Grove Drive Suite A Springfield, IL 62711

TEL: (217) 726-7569

FAX:

RE: Shree Kuber, Inc. - Champaign, IL

PDC WO: 0014320

PDC Laboratories, Inc. received 9 sample(s) on 1/24/2020 for the analyses presented in the following report.

All applicable quality control procedures met method specific acceptance criteria unless otherwise noted.

This report shall not be reproduced, except in full, without the prior written consent of PDC Laboratories, Inc.

If you have any questions, please feel free to contact me at (217) 753-1148.

Respectfully submitted,

Monlotolan

Michael Austin

Project Manager

Certifications: NELAP/NELAC - IL #100323

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber, Inc. - Champaign, IL

Client Sample ID:

CS-1

Lab Order: 0014320

Lab ID: 0014320-01

enem sample iz.								1 1320 01		
Collection Date:	1/22/20 10:00						Matrix: So			
Analyses		Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry										
Solids - total solids (TS)		76	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics										
*Benzene		U	0.00889		mg/kg dry	1	1/28/20 8:38	1/28/20 10:13	SW 8260B	CDM
*Ethylbenzene	0.	0663	0.00445		mg/kg dry	1	1/28/20 8:38	1/28/20 10:13	SW 8260B	CDM
*Toluene		U	0.00445		mg/kg dry	1	1/28/20 8:38	1/28/20 10:13	SW 8260B	CDM
*Xylenes- Total		U	0.0133		mg/kg dry	1	1/28/20 8:38	1/28/20 10:13	SW 8260B	CDM
Semivolatile Organics - F	PNA									
*Acenaphthene		U	1.10		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Acenaphthylene		U	0.605		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Anthracene		U	0.605		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Benzo(a)anthracene		U	0.0218		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Benzo(b)fluoranthene		U	0.0218		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Benzo(k)fluoranthene		U	0.0218		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Benzo(g,h,i)perylene		U	0.0467		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Benzo(a)pyrene		U	0.0218		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Chrysene		U	0.0916		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Dibenzo(a,h)anthracene		U	0.0218		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Fluoranthene		U	0.605		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Fluorene		U	0.128		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene		U	0.0266		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Naphthalene		U	0.605		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Phenanthrene		U	0.605		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA
*Pyrene	(.219	0.165		mg/kg dry	1	1/28/20 16:01	1/28/20 21:55	SW 8270C	JKA

PDC Laboratories, Inc.

Date: 1/31/2020

Lab Order: 0014320

LABORATORY RESULTS

Client: Green Wave Consulting, LLC

Project: Shree Kuber, Inc. - Champaign, IL

Client Sample ID: CS-2 Lab ID: 0014320-02

Collection Date: 1/22/20 10:15 Matrix: Solid

Conection Date:	1/22/20 10:15				Matrix: 50	110					
Analyses	Result	Limit	Qual Units	DF	Date Prepared	Date Analyzed	Method	Analyst			
General Chemistry											
Solids - total solids (TS)	79	0.050	%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH			
Volatile Organics											
*Benzene	U	0.00493	mg/kg dry	1	1/30/20 8:15	1/30/20 11:38	SW 8260B	CDM			
*Ethylbenzene	0.0217	0.00493	mg/kg dry	1	1/30/20 8:15	1/30/20 11:38	SW 8260B	CDM			
*Toluene	U	0.00493	mg/kg dry	1	1/30/20 8:15	1/30/20 11:38	SW 8260B	CDM			
*Xylenes- Total	U	0.0148	mg/kg dry	1	1/30/20 8:15	1/30/20 11:38	SW 8260B	CDM			
Semivolatile Organics - PNA	A										
*Acenaphthene	U	1.07	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Acenaphthylene	U	0.586	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Anthracene	U	0.586	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Benzo(a)anthracene	U	0.0211	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Benzo(b)fluoranthene	U	0.0211	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Benzo(k)fluoranthene	U	0.0211	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Benzo(g,h,i)perylene	U	0.0453	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Benzo(a)pyrene	U	0.0211	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Chrysene	U	0.0888	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Dibenzo(a,h)anthracene	U	0.0211	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Fluoranthene	U	0.586	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Fluorene	U	0.124	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Indeno(1,2,3-cd)pyrene	U	0.0258	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Naphthalene	U	0.586	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Phenanthrene	U	0.586	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			
*Pyrene	0.551	0.160	mg/kg dry	1	1/28/20 16:01	1/28/20 22:26	SW 8270C	JKA			

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber, Inc. - Champaign, IL

Client Sample ID:

CS-3

Lab Order: 0014320

Lab ID: 0014320-03

Collection Date:	1/22/20 10:30						Matrix: So	lid		
Analyses	1/22/20 10.50	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
		Result	Dillit	Quai	Circs	Dr.	Date Trepareu	Date Analyzed	Меточ	- mary st
General Chemistry		=0	0.050		9.4		1/04/00 10 50	1/07/00 0.51	03.635406	CLH
Solids - total solids (TS)		79	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics										
*Benzene		U	0.0233	Mrl	mg/kg dry	25	1/28/20 8:38	1/28/20 11:06	SW 8260B	CDM
*Ethylbenzene		0.194	0.159		mg/kg dry	25	1/28/20 8:38	1/28/20 11:06	SW 8260B	CDM
*Toluene		U	0.159		mg/kg dry	25	1/28/20 8:38	1/28/20 11:06	SW 8260B	CDM
*Xylenes- Total		U	0.477		mg/kg dry	25	1/28/20 8:38	1/28/20 11:06	SW 8260B	CDM
Semivolatile Organics - P	'NA									
*Acenaphthene		U	1.07		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Acenaphthylene		U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Anthracene		U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Benzo(a)anthracene		U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Benzo(b)fluoranthene		U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Benzo(k)fluoranthene		U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Benzo(g,h,i)perylene		U	0.0455		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Benzo(a)pyrene		U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Chrysene		U	0.0891		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Dibenzo(a,h)anthracene		U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Fluoranthene		U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Fluorene		U	0.125		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene		U	0.0258		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Naphthalene		U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Phenanthrene		U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA
*Pyrene		1.36	0.160		mg/kg dry	1	1/28/20 16:01	1/28/20 22:57	SW 8270C	JKA

PDC Laboratories, Inc.

LABORATORY RESULTS

Client: Green Wave Consulting, LLC

Project: Shree Kuber, Inc. - Champaign, IL

Client Sample ID: CS-4

Collection Date: 1/22/20 13:00

Lab Order: 0014320

Lab ID: 0014320-04

Date: 1/31/2020

Matrix: Solid

2011cction Date: 1/22/20 15.	.00	Matrix. Solid									
Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst		
General Chemistry											
Solids - total solids (TS)	79	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH		
Volatile Organics											
*Benzene	U	0.0212	Mrl	mg/kg dry	25	1/28/20 8:38	1/28/20 11:32	SW 8260B	CDM		
*Ethylbenzene	U	0.145		mg/kg dry	25	1/28/20 8:38	1/28/20 11:32	SW 8260B	CDM		
*Toluene	U	0.145		mg/kg dry	25	1/28/20 8:38	1/28/20 11:32	SW 8260B	CDM		
*Xylenes- Total	U	0.435		mg/kg dry	25	1/28/20 8:38	1/28/20 11:32	SW 8260B	CDM		
Semivolatile Organics - PNA											
*Acenaphthene	U	1.07		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Acenaphthylene	U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Anthracene	U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Benzo(a)anthracene	U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Benzo(b)fluoranthene	U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Benzo(k)fluoranthene	U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Benzo(g,h,i)perylene	U	0.0454		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Benzo(a)pyrene	U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Chrysene	U	0.0891		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Dibenzo(a,h)anthracene	U	0.0212		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Fluoranthene	U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Fluorene	U	0.125		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Indeno(1,2,3-cd)pyrene	U	0.0258		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Naphthalene	U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Phenanthrene	U	0.588		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		
*Pyrene	U	0.160		mg/kg dry	1	1/28/20 16:01	1/28/20 23:28	SW 8270C	JKA		

Раде 5 of 12

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber, Inc. - Champaign, IL

Client Sample ID:

CS-5

Lab Order: 0014320

Lab ID: 0014320-05

Collection Date: 1/22/20 13:15 Matrix: Solid Analyses Result Limit Qual Units DF Date Prepared Date Analyzed Method Analyst **General Chemistry** Solids - total solids (TS) 79 0.050 % 1/24/20 12:52 1/27/20 9:51 SM 2540G CLH Volatile Organics *Benzene U 0.00499 mg/kg dry 1 1/30/20 8:15 1/30/20 12:06 SW 8260B CDM *Ethylbenzene U 0.00499 mg/kg dry 1 1/30/20 8:15 1/30/20 12:06 SW 8260B CDM *Toluene U 0.00499 mg/kg dry 1 1/30/20 8:15 1/30/20 12:06 SW 8260B CDM *Xylenes-Total U 0.0150 mg/kg dry 1 1/30/20 8:15 1/30/20 12:06 SW 8260B CDM Semivolatile Organics - PNA U JKA *Acenaphthene 1.06 mg/kg dry 1/28/20 16:01 1/28/20 23:59 SW 8270C *Acenaphthylene U 0.584 mg/kg dry 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA U *Anthracene 0.584 1/28/20 23:59 SW 8270C JKA mg/kg dry 1 1/28/20 16:01 U 0.0211 *Benzo(a)anthracene mg/kg dry 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA *Benzo(b)fluoranthene U 0.0211 mg/kg dry 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA *Benzo(k)fluoranthene U 0.0211 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA mg/kg dry *Benzo(g,h,i)perylene U 0.0451 mg/kg dry 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA U 0.0211 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA *Benzo(a)pyrene mg/kg dry U 0.0885 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA *Chrysene mg/kg dry *Dibenzo(a,h)anthracene U 0.0211 mg/kg dry 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA *Fluoranthene U 0.584 mg/kg dry 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA U 1/28/20 23:59 SW 8270C JKA *Fluorene 0.124 mg/kg dry 1 1/28/20 16:01 *Indeno(1,2,3-cd)pyrene U 0.0257 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA mg/kg dry U *Naphthalene 0.584 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA mg/kg dry 1 U *Phenanthrene 0.584 1/28/20 23:59 SW 8270C JKA mg/kg dry 1 1/28/20 16:01 U *Pyrene 0.159 mg/kg dry 1 1/28/20 16:01 1/28/20 23:59 SW 8270C JKA

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber, Inc. - Champaign, IL

Client Sample ID:

CS-6

Lab Order: 0014320

Lab ID: 0014320-06

Collection Date:	1/22/20 13:30						Matrix: So	lid		
Analyses		Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry										
Solids - total solids (TS)		77	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics										
*Benzene		U	0.00488		mg/kg dry	1	1/28/20 8:38	1/28/20 12:24	SW 8260B	CDM
*Ethylbenzene		U	0.00488		mg/kg dry	1	1/28/20 8:38	1/28/20 12:24	SW 8260B	CDM
*Toluene		U	0.00488		mg/kg dry	1	1/28/20 8:38	1/28/20 12:24	SW 8260B	CDM
*Xylenes- Total		U	0.0146		mg/kg dry	1	1/28/20 8:38	1/28/20 12:24	SW 8260B	CDM
Semivolatile Organics - F	PNA									
*Acenaphthene		U	1.09		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Acenaphthylene		U	0.599		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Anthracene		U	0.599		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Benzo(a)anthracene		U	0.0216		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Benzo(b)fluoranthene		U	0.0216		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Benzo(k)fluoranthene		U	0.0216		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Benzo(g,h,i)perylene		U	0.0463		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Benzo(a)pyrene		U	0.0216		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Chrysene		U	0.0908		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Dibenzo(a,h)anthracene		U	0.0216		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Fluoranthene		U	0.599		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Fluorene		U	0.127		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene		U	0.0263		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Naphthalene		U	0.599		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Phenanthrene		U	0.599		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA
*Pyrene		U	0.163		mg/kg dry	1	1/28/20 16:01	1/29/20 0:30	SW 8270C	JKA

PDC Laboratories, Inc.

Client Sample ID:

LABORATORY RESULTS

Client: Green Wave Consulting, LLC

Project: Shree Kuber, Inc. - Champaign, IL

Lab Order: 0014320 CS-7 Lab ID: 0014320-07

Collection Date: 1/22/20 13:45 Matrix: Solid

Date: 1/31/2020

1,22,20	15115								
Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry									
Solids - total solids (TS)	77	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics									
*Benzene	U	0.0204	Mrl	mg/kg dry	25	1/28/20 8:38	1/28/20 12:51	SW 8260B	CDM
*Ethylbenzene	U	0.139		mg/kg dry	25	1/28/20 8:38	1/28/20 12:51	SW 8260B	CDM
*Toluene	U	0.139		mg/kg dry	25	1/28/20 8:38	1/28/20 12:51	SW 8260B	CDM
*Xylenes- Total	U	0.418		mg/kg dry	25	1/28/20 8:38	1/28/20 12:51	SW 8260B	CDM
Semivolatile Organics - PNA									
*Acenaphthene	U	1.09		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Acenaphthylene	U	0.602		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Anthracene	U	0.602		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Benzo(a)anthracene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Benzo(b)fluoranthene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Benzo(k)fluoranthene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Benzo(g,h,i)perylene	U	0.0465		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Benzo(a)pyrene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Chrysene	U	0.0912		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Dibenzo(a,h)anthracene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Fluoranthene	U	0.602		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Fluorene	U	0.128		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene	U	0.0265		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Naphthalene	U	0.602		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Phenanthrene	U	0.602		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA
*Pyrene	0.265	0.164		mg/kg dry	1	1/28/20 16:01	1/29/20 1:01	SW 8270C	JKA

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Client Sample ID:

CS-8

Shree Kuber, Inc. - Champaign, IL

Lab Order: 0014320

Lab ID: 0014320-08

Collection Date:

1/22/20 14:00

Matrix: Solid

1/22	2,20 11.00								
Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry									
Solids - total solids (TS)	88	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics									
*Benzene	U	0.00411		mg/kg dry	1	1/28/20 8:38	1/28/20 13:17	SW 8260B	CDM
*Ethylbenzene	U	0.00411		mg/kg dry	1	1/28/20 8:38	1/28/20 13:17	SW 8260B	CDM
*Toluene	U	0.00411		mg/kg dry	1	1/28/20 8:38	1/28/20 13:17	SW 8260B	CDM
*Xylenes- Total	U	0.0123		mg/kg dry	1	1/28/20 8:38	1/28/20 13:17	SW 8260B	CDM
Semivolatile Organics - PNA									
*Acenaphthene	U	0.899		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Acenaphthylene	U	0.494		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Anthracene	U	0.494		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Benzo(a)anthracene	U	0.0178		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Benzo(b)fluoranthene	U	0.0178		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Benzo(k)fluoranthene	U	0.0178		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Benzo(g,h,i)perylene	U	0.0382		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Benzo(a)pyrene	U	0.0178		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Chrysene	U	0.0749		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Dibenzo(a,h)anthracene	U	0.0178		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKА
*Fluoranthene	U	0.494		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Fluorene	U	0.105		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene	U	0.0217		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Naphthalene	U	0.494		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Phenanthrene	U	0.494		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA
*Pyrene	U	0.135		mg/kg dry	1	1/28/20 16:01	1/28/20 17:06	SW 8270C	JKA

PDC Laboratories, Inc.

Date: 1/31/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Client Sample ID:

CS-9

Shree Kuber, Inc. - Champaign, IL

Lab Order: 0014320 Lab ID: 0014320-09

Matrix: Solid

Collection Date: 1/22/20 14:30

Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry									
Solids - total solids (TS)	87	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics									
*Benzene	U	0.0149	Mrl	mg/kg dry	25	1/28/20 8:38	1/28/20 13:43	SW 8260B	CDM
*Ethylbenzene	U	0.102		mg/kg dry	25	1/28/20 8:38	1/28/20 13:43	SW 8260B	CDM
*Toluene	U	0.102		mg/kg dry	25	1/28/20 8:38	1/28/20 13:43	SW 8260B	CDM
*Xylenes- Total	U	0.306		mg/kg dry	25	1/28/20 8:38	1/28/20 13:43	SW 8260B	CDM
Semivolatile Organics - PNA									
*Acenaphthene	U	0.971		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Acenaphthylene	U	0.534		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Anthracene	U	0.534		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Benzo(a)anthracene	U	0.0193		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Benzo(b)fluoranthene	U	0.0193		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Benzo(k)fluoranthene	U	0.0193		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Benzo(g,h,i)perylene	U	0.0413		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Benzo(a)pyrene	U	0.0193		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Chrysene	U	0.0809		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Dibenzo(a,h)anthracene	U	0.0193		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Fluoranthene	U	0.534		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Fluorene	U	0.113		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene	U	0.0235		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Naphthalene	U	0.534		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Phenanthrene	U	0.534		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA
*Pyrene	U	0.146		mg/kg dry	1	1/28/20 16:01	1/28/20 17:39	SW 8270C	JKA

Date: 1/31/2020 PDC Laboratories, Inc.

LABORATORY RESULTS

Client: Green Wave Consulting, LLC Project: Shree Kuber, Inc. - Champaign, IL

Lab Order: 0014320

Notes and Definitions

Q5 Matrix interference present in sample. Result confirmed by reanalysis.

Mrl Reporting limit set between LOQ and MDL

NELAC certified compound.

U Analyte not detected (i.e. less than RL or MDL).

Page_11 of 12

Sampler Comments Method of Shamen Phone (217) 753-1148 Fax (217) 753-1152 Mad/Comm (maperature (10) ☐ Persud D many 9 <u>ر</u> ODAT DSIN MINO - Marie 会表 Analysis and a Mathed Heappristed 0346 122/ Tumanand Ting Standard 🎇 Chain of Custody Record Received By MNG Date Pequired X X718 NA Sample Type Comp | Grab Comp 30.11 ā 0 Fresen シジン Unishing Water 14 22/70 20,200605 241/70 Oate 7 7 7 7 3 64711 Shark Kibir PDC Laboratories, Inc. 1210 Capital Airport Drive Springfield, IL 62707 W 30 000 340 Fre Ash 050 300 200 33 7 2012 3.5 Time Surgary. (* S) I 0755 Mansked By Sample Convention Wy State, July Code When I have also 3 3 0 S 9 ہسر. الیکا

Copies White - Client / Yellow - PAS Inc. / Pink - Sampler

o,

Page

Illinois Environmental Protection Agency

Bureau of Land • 1021 N. Grand Avenue E. • P.O. Box 19276 • Springfield • Illinois • 62794-9276

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 – 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000 00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation, orally or in writing, in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/44 and 57.17). This form has been approved by the Forms Management Center.

Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

A.	Site	Ider	tific	ation

IEMA Incident # (6- or 8-digit)	20200005		IEPA LPC# (10-digit):	0190105433
Site Name: Shree Kuber				
Site Address (Not a P.O. Box)	1406 N Prospec	t		
City: Champaign	County:	Champaign	ZIP Code	61820
Leaking UST Technical File				

B. Sample Collector

I certify that:

- 1. Appropriate sampling equipment/methods were utilized to obtain representative samples.
- 2. Chain-of-custody procedures were followed in the field.
- 3. Sample integrity was maintained by proper preservation.
- 4. All samples were properly labeled.

C. Laboratory Representative

I certify that: 1001 001 4320

1. Proper chain-of-custody procedures were followed as documented on the chain-of-custody forms

(Initial)
2. Sample integrity was maintained by proper preservation.

(Initial)
3. All samples were properly labeled.

(Initial)
4. Quality assurance/quality control procedures were established and carried out.

(Initial)

5. Sample holding times were not exceeded.

6.	SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.	<u>IN IA</u> (Initial)
7.	An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).	M いい (Initial)

D. Signatures

I hereby affirm that all information contained in this form is true and accurate to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sample Collector	Laboratory Representative
Name DAVID Nowack	Name Michael L. Austin
Title Sewon Technician	Title Client Services Coordinator
Company Green Wave Consulting, LLC	Company PDC Laboratories, Inc.
Address 4440 Ash Grove Drive, Suite A	Address 1210 Capitol Airport Drive
City Springfield	City Springfield
State Illinois	State Illinois
Zip Code 62711	Zip Code 62707
Phone 217-726-7569	Phone 217-753-1148
Signature / avu Mowae	Signature Mullity
Date 1/22/20	Date

PDC Laboratories, Inc.

Tuesday, February 11, 2020

Jeff Wienhoff

Green Wave Consulting, LLC 4440 Ash Grove Drive Suite A Springfield, IL 62711

TEL: (217) 726-7569

FAX:

RE: Shree Kuber - Champaign, IL

PDC WO: 0014315

PDC Laboratories, Inc. received 3 sample(s) on 1/24/2020 for the analyses presented in the following report.

All applicable quality control procedures met method specific acceptance criteria unless otherwise noted.

This report shall not be reproduced, except in full, without the prior written consent of PDC Laboratories, Inc.

If you have any questions, please feel free to contact me at (217) 753-1148.

Respectfully submitted,

Muldofe

Michael Austin

Project Manager

Certifications:

NELAP/NELAC - IL #100323

PDC Laboratories, Inc.

Date: 2/11/2020

LABORATORY RESULTS

Client: Green Wave Consulting, LLC
Project: Shree Kuber - Champaign, IL

Shree Kuber - Champaign, IL Lab Order: 0014315

 Client Sample ID:
 CS-10
 Lab ID:
 0014315-01

 Collection Date:
 1/23/20 10:45
 Matrix:
 Solid

Collection Date: 1/23/20 10:45 Matrix: Solid

Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry									
Solids - total solids (TS)	78	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics									
*Benzene	U	0.00433		mg/kg dry	1	2/4/20 7:10	2/4/20 21:56	SW 8260B	CDM
*Ethylbenzene	U	0.00433		mg/kg dry	1	2/4/20 7:10	2/4/20 21:56	SW 8260B	CDM
*Toluene	U	0.00433		mg/kg dry	1	2/4/20 7:10	2/4/20 21:56	SW 8260B	CDM
*Xylenes- Total	U	0.0130		mg/kg dry	1	2/4/20 7:10	2/4/20 21:56	SW 8260B	CDM
Semivolatile Organics - PNA									
*Acenaphthene	U	1.08		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Acenaphthylene	U	0.592		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Anthracene	U	0.592		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Benzo(a)anthracene	U	0.0214		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JK.A
*Benzo(b)fluoranthene	U	0.0214		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Benzo(k)fluoranthene	U	0.0214		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKА
*Benzo(g,h,i)perylene	U	0.0457		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Benzo(a)pyrene	U	0.0214		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Chrysene	U	0.0897		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Dibenzo(a,h)anthracene	U	0.0214		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Fluoranthene	U	0.592		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Fluorene	U	0.126		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene	U	0.0260		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Naphthalene	U	0.592		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Phenanthrene	U	0.592		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA
*Pyrene	U	0.161		mg/kg dry	1	1/24/20 15:41	1/24/20 18:59	SW 8270C	JKA

PDC Laboratories, Inc.

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber - Champaign, IL

Client Sample ID: **Collection Date:**

CS-11

1/23/20 14:15

Lab Order: 0014315

Lab ID: 0014315-02

Date: 2/11/2020

Matrix: Solid

Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst
General Chemistry									
Solids - total solids (TS)	77	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH
Volatile Organics									
*Benzene	U	0.00500		mg/kg dry	1	1/28/20 8:38	1/28/20 14:09	SW 8260B	CDM
*Ethylbenzene	U	0.00500		mg/kg dry	1	1/28/20 8:38	1/28/20 14:09	SW 8260B	CDM
*Toluene	U	0.00500		mg/kg dry	1	1/28/20 8:38	1/28/20 14:09	SW 8260B	CDM
*Xylenes- Total	U	0.0150		mg/kg dry	1	1/28/20 8:38	1/28/20 14:09	SW 8260B	CDM
Semivolatile Organics - PNA									
*Acenaphthene	U	1.03		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Acenaphthylene	U	0.565		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Anthracene	U	0.565		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Benzo(a)anthracene	U	0.0204		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Benzo(b)fluoranthene	U	0.0204		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Benzo(k)fluoranthene	U	0.0204		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Benzo(g,h,i)perylene	U	0.0436		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Benzo(a)pyrene	U	0.0204		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Chrysene	U	0.0856		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Dibenzo(a,h)anthracene	U	0.0204		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Fluoranthene	U	0.565		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Fluorene	U	0.120		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Indeno(1,2,3-cd)pyrene	U	0.0248		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Naphthalene	U	0.565		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Phenanthrene	U	0.565		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA
*Pyrene	0.195	0.154		mg/kg dry	1	1/24/20 15:41	1/24/20 19:32	SW 8270C	JKA

Pagge 3 of 6

PDC Laboratories, Inc.

Date: 2/11/2020

LABORATORY RESULTS

Client:

Green Wave Consulting, LLC

Project:

Shree Kuber - Champaign, IL

Client Sample ID: Collection Date: CS-12

Since Rubei - Champa

1/23/20 14:45

Lab Order: 0014315

Lab ID: 0014315-03

Matrix: Solid

1/23/20 14.43	14.43 Solid									
Analyses	Result	Limit	Qual	Units	DF	Date Prepared	Date Analyzed	Method	Analyst	
General Chemistry										
Solids - total solids (TS)	79	0.050		%	1	1/24/20 12:52	1/27/20 9:51	SM 2540G	CLH	
Volatile Organics										
*Benzene	U	0.00491		mg/kg dry	1	1/28/20 8:38	1/28/20 14:37	SW 8260B	CDM	
*Ethylbenzene	U	0.00491		mg/kg dry	1	1/28/20 8:38	1/28/20 14:37	SW 8260B	CDM	
*Toluene	U	0.00491		mg/kg dry	1	1/28/20 8:38	1/28/20 14:37	SW 8260B	CDM	
*Xylenes- Total	U	0.0147		mg/kg dry	1	1/28/20 8:38	1/28/20 14:37	SW 8260B	CDM	
Semivolatile Organics - PNA										
*Acenaphthene	U	1.06		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Acenaphthylene	U	0.583		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Anthracene	U	0.583		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Benzo(a)anthracene	U	0.0210		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Benzo(b)fluoranthene	U	0.0210		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Benzo(k)fluoranthene	U	0.0210		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Benzo(g,h,i)perylene	U	0.0450		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Benzo(a)pyrene	U	0.0210		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Chrysene	U	0.0883		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Dibenzo(a,h)anthracene	U	0.0210		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Fluoranthene	U	0.583		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Fluorene	U	0.124		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Indeno(1,2,3-cd)pyrene	U	0.0256		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Naphthalene	U	0.583		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Phenanthrene	U	0.583		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JKA	
*Pyrene	U	0.159		mg/kg dry	1	1/28/20 16:01	1/28/20 20:54	SW 8270C	JКА	

PDC Laboratories, Inc. Date: 2/11/2020

	LABORATORY RESULTS								
Client: Project:	Green Wave Consulting, LLC Shree Kuber - Champaign, IL	Lab Order: 0014315							
	Notes and Def	aitions							
R	Matrix Spike/Matrix Spike Duplicate Failed %Relative Percent Difference criterion.								
Q5	Matrix interference present in sample. Result confirmed by reanalysis.								
Q2	Matrix Spike Duplicate failed % recovery acceptance limits. The	associated blank spike recovery was acceptable.							
Q1	Matrix Spike failed % recovery acceptance limits. The associated blank spike recovery was acceptable.								
Mrl	Reporting limit set between LOQ and MDL								
*	NELAC certified compound.								
U	Analyte not detected (i.e. less than RL or MDL).								

Sampler Comments Method of Shipment emperature (10) Phone (217) 753-1148 Fax (217) 753-1152 □ Ind/Comm September 1 C Resid] mdesi Copies office Clemi Fellow PAS Inc Flork Sampler ч П 8 ODAT CALM DSIN No Time (Yess) o 1 VC OC Fewel Cata Analysis arraign Meethed Requesting Rush Standard 🌉 Chain of Custody Record Received By authaltoons firm Take forguited ZLAZ 107 Sample Trans Page Mo of Time S J Code W T T T T Cock Dete Sall-Set PDC Laboratories, Inc. 1210 Capital Airport Drive Springfield, IL 62707 Y XI 2 1/1 N N. W. New York AL. A. 123/2 STATE OF Relatinguished By PAS COC Rev 3 Mark. 70 Con. Company of the (3:0 CS-10 Savene Descri 750 Dec 1 Locations

A. Site Identification

Illinois Environmental Protection Agency

Bureau of Land • 1021 N. Grand Avenue E. • P.O. Box 19276 • Springfield • Illinois • 62794-9276

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 – 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000 00 for the violation and an additional civil penalty of not to exceed \$10 000 00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation, orally or in writing, in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/44 and 57.17). This form has been approved by the Forms Management Center.

Leaking Underground Storage Tank Program Laboratory Certification for Chemical Analysis

		MA Incident # (6- or 8-digit) e Name: Shree Kuber	20200005	kalanggapangkan kepanggang araw ke-kelebapa-anggapang	IEPA LPC# (10-digit): 01901054	33
		e Address (Not a P.O. Box):	1406 N Prospec			
		y: Champaign		Champaign	ZIP Code: 61820	article (s), in principle alternative with the extra principle and the city of the city of the city of the city Self-Self-Self-Self-Self-Self-Self-Self-
	Lea	aking UST Technical File				
В.	Sa	mple Collector				
	I ce	ertify that:			,	يامسم
	1.	Appropriate sampling equip	ment/methods w	ere utilized to o	obtain representative samples.	
					,	(Invital)
	2.	Chain-of-custody procedure	s were followed	in the field.		and an annual section of the section
						(Initial)
	3.	Sample integrity was mainte	ained by proper p	preservation.		Anitial)
	4.	All samples were properly le	abeled.			(Initial)
C.	Lal	boratory Representativ	/8			(1111121)
	l ce	ertify that: いわば DDI	4315			
	1.	Proper chain-of-custody pro	ocedures were for	llowed as docu	mented on the chain-of-custody forms	mus
	2.	Comple integrity was maint				(Initial) M A
	۷.	Sample integrity was mainte	ained by proper p	reservation		(Initial)
	3.	All samples were properly la	abeled.			MUS
		, , , , , , , , , , , , , , , , , , ,				(Initial)
	4.	Quality assurance/quality co	ontrol procedures	s were establish	ned and carried out	mis
						(Initial)
	5.	Sample holding times were	not exceeded.			MLA
						(Initial)

6.	SW-846 Analytical Laboratory Procedure (USEPA) methods were used for the analyses.	(Initial)
7.	An accredited lab performed quantitative analysis using test methods identified in 35 IAC 186.180 (for samples collected on or after January 1, 2003).	(Initial)

D. Signatures

I hereby affirm that all information contained in this form is true and accurate to the best of my knowledge and belief. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Sample Collector M	Laboratory Representative
Name FER Well	Name Michael L. Austin
Title S_{l} , P_{l}	THE Client Services Cooding for
Company Green Wave Consulting, LLC	Company PDC Laboratories, Inc.
Address 4440 Ash Grove Drive, Suite A	Address 1210 Capitol Airport Drive
City Springfield	City Springfield
State Illinois	State Illinois
Zip Code 62711	Zip Code 62707
Phone 217-726-7569	Phone 217-753-1148
Signature ////////	Signature Multh
Date (/////2//-ro	Date 1/3/00

ATTACHMENT 4

1	uniform HAZARDOUS 1. Generator ID Number	2. Page 1 of 3. Eme	rgency Respons	e Phone	4. Manifest	Form A Tracking Num		
	WASTE MANIFEST		00-424-006	30	02	1316	1206	<u>JJK</u>
	5. Generator's Name and Mailing Address Generator's Phone:		or's Site Addres:	s (if different th	nan mailing addre	ss)		
	6. Transporter 1 Company Name				U.S. EPA ID	Vumber		
	7. Transporter 2 Company Name	A INC dba FUTURE	ENVIRON	MENTAL	U.S. EPA ID 1	Number	1396	
	Designated Facility Name and Site Address Facility's Phone:	NT SYSTEMS (WI	T)		U.S. EPA ID I	Number	4209	
	9a. U.S. DOT Description (including Proper Shipping Name, Hazard Class, ID Number and Packing Group (if any))	er,	10. Conta	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13. Waste Co	des
GENERATOR -	NON-HAZARDOUS LIQUID WASTE, NON-REGULATED BY D.O.T		1	П	3000	g _		
GEN	3.							
	3.	-						
	14. Special Handling Instructions and Additional Information							
	15. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of th marked and labeled/placarded, and are in all respects in proper condition for transport ac Exporter, I certify that the contents of this consignment conform to the terms of the attach I certify that the waste minimization statement identified in 40 CFR 262.27(a) (if I am a lai	ccording to applicable inter ned EPA Acknowledgment o	national and nati of Consent.	onal governme	ental regulations.	pping name, ar If export shipm	nd are classified, pac ent and I am the Pri	ckaged, mary
	Generator's/Offeror's Printed/Typed Name	Signature	7				Month Da	y Year
NT.L	16. International Shipments Import to U.S. Transporter signature (for exports only):	Export from U.S.	Port of en					20
<u> </u>	17. Transporter Acknowledgment of Receipt of Materials		Date leavi	iig 0.5				
OKI	Transporter 1 Printed/Typed Name	Signature	- 5	7		6	Month Da	y Year
I KANSPORTER INTL	Transporter 2 Printed/Typed Name	Signature	- Andrew	and the same	20		Month Da	y Year
	18. Discrepancy 18a. Discrepancy Indication Space Quantity Type		Residue		Partial Reje	ction	Full Re	ejection
	40b Alfornote Facility (as Congretar)	Mar	ifest Reference	Number:	LLC EDAID M			
ACIE.	18b. Alternate Facility (or Generator)				U.S. EPA ID N	minet		
DESIGNALED FACILLY	Facility's Phone: 18c. Signature of Alternate Facility (or Generator)	75 1					Month Da	ay Year
200	19. Hazardous Waste Report Management Method Codes (i.e., codes for hazardous waste treat	atment, disposal, and recyc	ling systems)		4.			
	20. Designated Facility Owner or Operator: Certification of receipt of hazardous materials cover Printed/Typed Name	red by the manifest except Signature	as noted in Item	18a			Month Da	y Year
							0230	

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

TRANSPORTER:

TOTAL QUANTITY:

1 KN # 445883

Earth Services 618.218.4958

CUSTOMER

DRIVER

0231

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028 Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

IRANSI	PORT	ER:
--------	------	-----

Earth Services 618.218.4958

DRIVER:

CUSTOMER:

TOTAL QUANTITY:

KN 445072

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL	WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

TRANSPORTER	RANSPU	KIEK:	
-------------	--------	-------	--

Earth Services 618,218,4958

DRIVER:

CUSTOMER:

F 171 TOTAL QUANTITY:

445023

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

TRANSPORTER:

Earth Services 618.218.4958

DRWER:

CUSTOMER:

TOTAL QUANTITY:

XN #445055

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

IK	ANS	POR	T	ER:	
,	11101	VII	0 1	L	

Earth Services 618.218.4958

DRIVER:

CUSTOMER:

TOTAL QUANTITY:

2/45048

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW - Diesel Contaminated Soil Permit - 06-1144

SHIP DATE

1-23_20

TRANSPORTER:

Earth Services 618.218.4958

DRIVER:

CUSTOMER: _

TOTAL QUANTITY:

445045

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

Earth Services 618.218.4958

DRIVER:

TRANSPORTER:

CUSTOMER:

173

KN 4445-110

TOTAL QUANTITY:

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

N	O!	N-S	PEC	IAL	WA	STE	NA	ME(S)

NSW - Diesel Contaminated Soil Permit - 06-1144

SHIP	DA	TE
------	----	----

1-23-20

TRANSPORTER:

TOTAL QUANTITY:

Earth Services 618.218.4958

DRIVER:

CUSTOMER:

- KN # 4451/2

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-23-20

TRANSPORTER:

TOTAL QUANTITY:

MU 445/25

Earth Services 618.218.4958

CUSTOMER

0239

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144 SHIP DATE

1-23-20

TRANSPORTER:

TOTAL QUANTITY:

Earth Services 618.218.4958

DRIVER

Dobert Cloonheim

173

CUSTOMER:

54614

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TRANSPORTER:

CUSTOMER:

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-802

TOTAL QUANTITY:

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-24-20.

Earth Services 618.218.4958	
DRIVER: Bonhan	171
	K '

KD #445774

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028 Fax: (217) 935-5602

SHIP DATE

NON-SPECIAL WASTE NAME(S)

NSW - Diesel Contaminated Soil
Permit - 06-1144

TRANSPORTER:

Earth Services 618.218.4958

DRIVER:

CUSTOMER:

H 1/45/84

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TRANSPORTED.

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028 Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144

SHIP DATE

1-22-20

TRANSPORTER:	TOTAL QUANT
Earth Services 618.218.4958	
Reith Colon	
CUSTOMER:	\ \ \ \ \
Mile Botter	HULF

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

SHIP DATE

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

BILL OF LADING

FROM (Generator Name & Address)

Shree Kuber 1206 N. Prospect Ave Champaign, IL 61820

Contact: Josh Appleton PH: (618) 218-4958

TO (Disposal Facility)

Clinton Landfill No. 3 9550 Heritage Road Clinton, IL 61727 Phone: (217) 935-8028

Fax: (217) 935-5602

NON-SPECIAL WASTE NAME(S)

NSW – Diesel Contaminated Soil Permit – 06-1144 SHIP DATE

1-24-20

TRANSPORTER:

TOTAL QUANTITY:

Earth Services 618.218.4958

DRIVI

CUSTOMER:

445-175

ATTACHMENT 5

ILLINOI Electronic Eiling: Received Clerk's Office 1/6/2021

	Тор	Bottom
ravel	0	2
ilt/clay	2	6
ill	6	15
otal Depth asing: 2" PVC from 0' to 5' creen: 10' of 2" diameter .01 slot rout: BENTONITE from 0 to 0.		15
tatic level 6' below casing top which is 0' above GL		
wner Address: , ddress of well: 712 Bloomington Rd.		
Champaign, IL ocation from the driller		
		444 V a b
		* Address of Address of the Address

Permit Date: Permit #: none

COMPANY Advanced Environmental Wareco Service Inc. FARM

DATE DRILLED July 25, 1997 **NO**. MW-11

COUNTY NO. 25175 ELEVATION 0

LOCATION NE SW SW

LATITUDE 40.129896

LONGITUDE -88.254414

COUNTY Champaign API 120192517500 1 - 19N - 8E

Page 1 ILLINOI Electronic Filing: Received Clerk's Office 1/6/2021

Monitoring	Top	Bottom
soil	0	
silt/clay	3	
sand/clay	8	13
clay	13	15
Total Depth Casing: 2" PVC from 0' to 5' Screen: 10' of 2" diameter .01 slot		15
Grout: BENTONITE from 0 to 0.		
Static level 7' below casing top which is 0' above GL		
Owner Address: , Address of well: 712 Bloomington Rd.		
Champaign, IL		
Location source: Location from the driller		
		0.00 ORGAN

Permit Date: Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED December 19, 1996 NO. MW-2

ELEVATION 0 COUNTY NO. 25167

LOCATION NE SW SW

LATITUDE 40.129896 **LONGITUDE** -88.254414

COUNTY Champaign API 120192516700 1 - 19N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Clerk's Office 1/6/2021

Monitoring	Тор	Bottom
soil	0	3
silt/clay	3	8
sand	8	9
silt	9	12
ill	12	15
Cotal Depth Casing: 2" PVC from 0' to 5' Coreen: 10' of 2" diameter .01 slot Crout: BENTONITE from 0 to 0.		15
Static level 5' below casing top which is 0' above GL		
wner Address: , ddress of well: 712 Bloomington Rd.		
Champaign, IL		
ocation source: Location from the driller		
		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
		and the same of th

Permit Date:

Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED January 7, 1997

NO. MW-4

ELEVATION 0

COUNTY NO. 25169

LOCATION NE SW SW

LATITUDE 40.129896

LONGITUDE -88.254414

COUNTY Champaign

API 120192516900

1 - 19N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Clerk's Office 1/6/2021

Monitoring	Тор	Bottom
soil	0	
silt/clay	3	15
Cotal Depth		15
Casing: 2" PVC from 0' to 5'		
Screen: 10' of 2" diameter .01 slot		
Grout: BENTONITE from 0 to 0.		
Static level 6' below casing top which is 0' above GL		
Owner Address:		
Address of well: 712 Bloomington Rd.		
Champaign, IL		
Location source: Location from the driller		
		The state of the s

Permit Date: Permit #: none

COMPANY Advanced Environmental **FARM** Wareco Service Inc.

DATE DRILLED July 25, 1997 NO. MW-12

ELEVATION 0

COUNTY NO. 25176

LOCATION NE SW SW

LATITUDE 40.129896 **LONGITUDE** -88.254414

COUNTY Champaign API 120192517600 1 - 19N - 8E

Page 1 ILLINOIS FIGURE Filing: Received Clerk's Office 1/6/2021

Monitoring	Тор	Bottom
oil	0	2
ilt/clay	2	8
ill	8	15
otal Depth Casing: 2" PVC from 0' to 5' creen: 10' of 2" diameter .01 slot rout: BENTONITE from 0 to 0.		15
tatic level 5' below casing top which is 0' above GL		
wner Address: ddress of well: 712 Bloomington Rd. Champaign, IL		
ocation source: Location from the driller		

Permit Date: Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED January 7, 1997

COUNTY NO. 25171

NO. MW-7

ELEVATION 0 LOCATION NE

NE SW SW

LATITUDE 40.129896

LONGITUDE -88.254414

COUNTY Champaign API 120192517100

1 - 19N - 8E

ILLINOIS STATE GEOLOGICAL SURVEY Clerk's Office 1/6/2021 Page 1

clay	0	
alay		2
	2	3
and/gravel	3	11
ill	11	12
sand	12	15
Cotal Depth Casing: 2" PVC from 0' to 5' Coreen: 10' of 2" diameter .01 slot Crout: BENTONITE from 0 to 0.		15
Static level 7' below casing top which is 0' above GL		The same of the sa
Owner Address: , ddress of well: 712 Bloomington Rd. Champaign, IL		And the second s
ocation source. Location from the diffier		
		And the same and t
		ARRAMENT TO CONTROL TO

Permit #: none Permit Date:

COMPANY Advanced Environmental

Wareco Service Inc. FARM DATE DRILLED July 25, 1997

NO. MW-8 **COUNTY NO.** 25172

ELEVATION 0

LOCATION NE SW SW

LATITUDE 40.129896 **LONGITUDE** -88.254414

COUNTY Champaign API 120192517200 1 - 19N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Clerk's Office 1/6/2021

Monitoring	Top	Bottom
oil	0	
ilt/clay	3	11
ill	11	15
Cotal Depth Casing: 2" PVC from 0' to 5' creen: 10' of 2" diameter .01 slot rout: BENTONITE from 0 to 0.		15
tatic level 7' below casing top which is 0' above GL		
wner Address: , ddress of well: 712 Bloomington Rd. Champaign, IL		
ocation source: Location from the driller		
		The same man man and the same state of the same
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
		TO THE PERSON WAS ASSESSED.
		7775a aana aana aana aana aana aana aana

Permit Dat	e:		Permit #:	none
COMPANY	Advanced Environmenta	1	AND THE PARTY OF T	
FARM	Wareco Service Inc.			
DATE DRII	LLED July 25, 1997		NO. MW-9	
ELEVATION	1 0	COUNTY	NO . 25173	
LOCATION	NE SW SW			

COUNTY Champaign API 120192517300 1 - 19N - 8E

LONGITUDE -88.254414

LATITUDE 40.129896

Page 1 ILLINOI Electropic Eiling: Received Clerk's Office 1/6/2021

Monitoring	Top	Bottom
soil	0	ANY ANALYSIS OF THE PROPERTY O
silt/clay	2	4
sand	4	1:
silt/clay	11	1:
otal Depth		15
Casing: 2" PVC from 0' to 5'		
Screen: 10' of 2" diameter .01 slot		
Grout: BENTONITE from 0 to 0.		
Static level 6' below casing top which is 0' above GL		
wner Address:		
Address of well: 712 Bloomington Rd.		
Champaign, IL		
ocation source: Location from the driller		
		Total variation

Permit Date:

Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED July 25, 1997

NO. MW-10

ELEVATION 0

COUNTY NO. 25174

LOCATION NE SW SW

LATITUDE 40.129896

LONGITUDE -88.254414

COUNTY Champaign

API 120192517400

1 - 19N - 8E

Page 1 ILLINOI Electronic Eiling: Received Clerk's Office 1/6/2021

Monitoring	Тор	Bottom
soil	0	
silt/clay	3	20
Fotal Depth		20
Casing: 2" PVC from 0' to 10'		Edit of the Control o
Screen: 10' of 2" diameter .01 slot		
Grout: BENTONITE from 0 to 0.		
Static level 5' below casing top which is 0' above GL		TOTAL DOOR TOTAL BEATER
Owner Address:		**************************************
Address of well: 712 Bloomington Rd.		
Champaign, IL		
Location source: Location from the driller		

		TO GOT PRESENTATION
		A RANGE CONTRACTOR OF THE PARTY
		·

Permit Date: Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED December 19, 1996 NO. MW-1

ELEVATION 0 COUNTY NO. 25166

LOCATION NE SW SW

LATITUDE 40.129896 **LONGITUDE** -88.254414

COUNTY Champaign API 120192516600 1 - 19N - 8E

ILLINOI Electropic Eiling: Received Clerk's Office 1/6/2021

Monitoring	Тор	Bottom
soil	0	
silt/clay	5	15
Total Depth		15
Casing: 2" PVC from 0' to 5'		
Screen: 10' of 2" diameter .01 slot		
Grout: BENTONITE from 0 to 0.		400
Static level 5' below casing top which is 0' above GL		
Owner Address:		
Address of well: 712 Bloomington Rd.		OTTO CARACTER STATE OF THE STAT
Champaign, IL		
Location source: Location from the driller		a company of
		444
		The state of the s

Permit Date:

Permit #: none

COMPANY AEOC

FARM Wareco Service Inc.

DATE DRILLED December 19, 1996 NO. MW-3

ELEVATION 0 COUNTY NO. 25168

LOCATION NE SW SW

LATITUDE 40.129896 **LONGITUDE** -88.254414

COUNTY Champaign API 120192516800 1 - 19N - 8E

Page 1 ILLINOIS Electronic Eiling: Received Clerk's Office 1/6/2021

Monitoring	Top	Bottom
soil	0	2
sand	2	13
sand & gravel	13	15
Cotal Depth		15
Casing: 2" PVC from 0' to 5'		
Screen: 10' of 2" diameter .01 slot		
Grout: BENTONITE from 0 to 0.		
Static level 6' below casing top which is 0' above GL		
Owner Address:		
Address of well: 712 Bloomington Rd.		
Champaign, IL		
Location source: Location from the driller		
		THE PERSON NAMED IN COLUMN 1

Permit Dat		Permit	: #:	none
COMPANY	AEOC			
FARM	Wareco Service Inc.			
DATE DRILLED January 7, 1997		NO. MW-	-5	
ELEVATION	1 0	COUNTY NO. 251	170	
LOCATION	NE SW SW			

LATITUDE 40.129896 LONGITUDE -88.254414

COUNTY Champaign API 120192517000 1 - 19N - 8E

Page 1 ILLINOIS STATE GEOLOGICAL SURVEY Clerk's Office 1/6/2021

Water Well	Top	Bottom
S.S. #18533	0	0
soil, dark brown, yellow, non-calcareous	0	5
till, yl-bf, silty some pebbles, calc	5	15
till, gray-brown, gravelly, sandy, calc	15	45
gvl & s, slightly dirty, med-crs, calc	45	50
till, sty & cly with sand & gvl, calc	50	135
till, gravelly, buff & gray, calcareous	135	160
till, silty with sand and gravel, calc	160	170
gvl & s, slightly dirty, med-crs, calc	170	180
till, gravelly, medium-coarse, calc	180	185
gravel, slightly dirty, calcareous	185	190
till, sandy, gry-bf, some pebbles, calc	190	200
Interpretation by: J.W. Foster on 01-JAN-48 60' south-east of Statin 90+60 of Transmission Main, in berm North s bloomington Rd.		
Pleistocene System - Wisconsin. Soil, dark brown, yellow, non-calcareous	0	5
till, yellow-buff, silty, some pebbles, calcareous	5	15
till, gray-brown, gravelly, sandy, calcareous	15	45
gravel and sand, slightly dirty, medium-coarse, calcareous	45	50
till, silty and clayey with sand and gravel, calcared	ous 50	135
Illinoian - till, gravelly, buff and gray, calcareous	135	160
till, silty with sand and gravel, calcareous	160	170
gravel and sand, slightly dirty, medium-coarse,		

Permit Date: Permit #:

COMPANY Hayes & Sims Drlg

FARM Ill. Water Service TH

DATE DRILLED January 1, 1948 NO. 31-48

ELEVATION 747GL COUNTY NO. 00382

LOCATION 1100'S line, 1300'W line of section

LATITUDE 40.130188 LONGITUDE -88.253241

COUNTY Champaign API 120190038200 1 - 19N - 8E

Page 2 ILLINOI Electronic Eiling: Received Clerk's Office 1/6/2021

calcareous	170	180
till, gravelly, medium-coarse, calcareous	180	185
gravel, slightly dirty, calcareous	185	190
till, sandy, gray-buff, some pebbles, calcareous	190	200
Wisconsinan Illinoian Total Depth	5 135	135 200 200
Driller's Log filed Survey Sample Study filed Sample set # 18533 (' - 200') Received: January 1, 1948 Owner Address: ,	3	

Hayes & Sims Drlg

Ill. Water Service 1 31-48

COUNTY Champaign

API 120190038200 1 - 19N - 8E

Page 1 ILLINOIS LESTRATE GEOLOGICAL SURVEY CHERK'S Office 1/6/2021

Water Well	Top	Bottom
S.S. #17736	0	0
samples to approx. 100' missing	0	100
gravel, coarse, slightly dirty, calc	100	106
gravel, coarse, clean, calc	106	114
s & gravel, sand med to crs, cln, calc	114	125
s, med-crs, cln, some gvl, ptly ox, calc	125	130
s,med,wl srtd,cln,some gvl,ptly ox,calc	130	135
s&gvl,s ylbf,med/crs,cln,ptly ox,calc	135	145
gravel, granule, extremely coarse, clean	145	147
gravel and sand, coarse, clean, calc	147	154
gravel, granule, extremely coarse, clean	154	156
gravel, clean, some coarse sand, calc	156	159
missing	159	160
s&gvl,s f/crs,gvl,crs,ox,ptly dty,calc	160	165
<pre>Interpretation by: J.W. Foster on 01-JAN-49 Pleistocene System - Samples to approximately 100' missing. Gravel, coarse, slightly dirty, calcareous</pre>	0	106
gravel, coarse, clean, calcareous	106	114
sand and gravel, sand medium to coarse, clean, calcareous	114	125
sand, medium-coarse, clean, some gravel, partly oxidized, calcareous	125	130
same, medium, well-sorted	130	135
sand and gravel, sand yellow-buff, medium-coarse, cle partly oxidized, calcareous	ean, 135	145
gravel, granule, extremely coarse, clean	145	147

Permit Date:

COUNTY

Champaign

Permit #:

API 120190038100

COMPANY Layne Western Co., Inc.

FARM University of Illinois

DATE DRILLED January 1, 1948 NO. 10

ELEVATION 745TM COUNTY NO. 00381

LOCATION 0'N 0'E SW/c

LATITUDE 40.127151 LONGITUDE -88.257919

1 - 19N - 8E

Page 2 ILLINOI Electropic Eiling: Received Clerk's Office 1/6/2021

794		
gravel and sand, coarse, clean, calcareous	147	154
gravel, granule, extremely coarse, clean	154	156
gravel, clean, some coarse sand, calcareous	156	159
missing	159	160
sand and gravel, sand fine to coarse, gravel, coarse, oxidized, partly dirty, calcareous	160	165
Total Depth		165
Remarks: see logbook for detailed sample study	H 6 A A A	
Survey Sample Study filed		
Sample set # 17736 (106' - 160') Received: January 1, 1	.948	
Owner Address: ,	and an article color	
	- Contraction	
	a postport de la constante de	

Layne Western Co., Inc.

University of Illinoi 10

COUNTY Champaign

API 120190038100

1 - 19N - 8E

ILLINOIE LEGINOE RECEIVE CELLINGE RECEIVE CHECK'S Office 1/6/2021

II.	Тор	Bottom
prown clayey silt	0	
prown sand & pebbles	9	1
prown clayey silt	11	15
Casing: 2" PVC SOLID RISER from 0' to 5'		15
2" PVC SCREEN from 5' to 15'		
Screen: 10' of 2" diameter 10 slot		
Grout: CEMENT from 1 to 2.		
Grout: BENTONITE from 2 to 4.		
Static level 9' below casing top which is 0' above GL		
ocation source: Location from the driller		

Permit Date:	Permit #·	none

COMPANY United Geoscience FARM Amoco Oil Co.

DATE DRILLED March 21, 1994 NO. MW-8

ELEVATION 0 COUNTY NO. 24588

LOCATION NW NW

LATITUDE 40.125333 **LONGITUDE** -88.255567

COUNTY Champaign API 120192458800 12 - 19N - 8E

Page 1 ILLINOIE LEGINGE CENTRE PRESENTATION ILLINOIE LEGINGE CENTRE PROPERTY PROPERTY IN THE PROPERTY OF THE P

Monitoring	Top	Bottom
prown clayey silt	0	1
Total Depth		17
Casing: 2" PVC SOLID RISER from 0' to 7' 2" PVC SCREEN from 7' to 17'		TO AMERICA
Screen: 10' of 2" diameter 10 slot		
Grout: CEMENT from 1 to 2.		
Grout: BENTONITE from 2 to 5.		
Static level 12' below casing top which is 0' above GL		
Owner Address: 601 N. Neil Champaign, IL		
ocation source: Location from the driller		
		A PA 1-1 strategies
		500 E E E
		The state of the s

Permit Dat	te:	Permit #: n	one
COMPANY	United Geosci	ence	
FARM	Amoco Oil Co.		
DATE DRI	LLED March 22,	1994 NO . MW-6	
ELEVATIO	N O	COUNTY NO. 24586	
LOCATION	NW NW 40.125333		
COUNTY	Champaign	LONGITUDE -88.255567 API 120192458600	12 - 19N - 8E

ILLINOIE LESTING TO THE STATE OF THE PAGE
Monitoring	Тор	Bottom
prown clayey silt & sand	0	
prown sand	6	
prown clayey silt	8	15
Casing: 2" PVC SOLID RISER from 0' to 5' 2" PVC SCREEN from 5' to 15' Screen: 10' of 2" diameter 10 slot Grout: CEMENT from 1 to 2. Grout: BENTONITE from 2 to 4. Static level 9' below casing top which is 0' above GL		15
Owner Address: 601 N. Neil Champaign, IL cocation source: Location from the driller		
		700

Permit Dat	e:		Permit #:	none
COMPANY	United Geosciend	ce		
FARM	Amoco Oil Co.			
DATE DRII	LED March 21, 199	94	NO . MW-7	
ELEVATION	1 0	COUNTY	NO. 24587	
LOCATION	NM NM			
T.ATTTTIDE	40 125333	LONGTHIDE -	88 255567	

LATITUDE 40.125333 LONGITUDE -88.255567

COUNTY Champaign API 120192458700 12 - 19N - 8E

Page 1 ILLINOI E GENTAGE ICE HINGE TREE CENTRAL PROPERTY IN 11/2021

Engineering Test	Top	Bottom
very stiff mottled yl & gry silty clay	0	6
very stiff mottled yl & gry clay till	6	10
nard gray stoney clay till	10	34
very stiff mottled yellow and gray silty	0	6.2
very stiff mottled yellow and gray clay	6.2	9.7
ard gray stoney clay till	9.7	33.7
otal Depth		34
Owner Address: , ddress of well: Prospect Ave. bridge over FA 39		

Permit	Date:	Permit #	н.
	Date.	reruit (π.

COMPANY IL Division of Highways

FARM FA 39

FA 39

DATE DRILLED January 1, 1955

ELEVATION 0 COUNTY NO. 24267

LOCATION 2640'N line, 0'W line of section

LATITUDE 40.134537 **LONGITUDE** -88.257909

COUNTY Champaign API 120192426700 1 - 19N - 8E

NO. 1

Page 1 ILLINOIS LEGITION ICE HINGE TO RECEIVE OF LEGIT OF 1/6/2021

Engineering Test	Тор	Bottom
#C-6582, no record	0	3:
Cotal Depth		31
Core #C 6582 (' - 31') Received: July 1, 1968 Owner Address: ,		
	100 (MA) (MA) (MA)	
		A District
	TI PERSONAL PROPERTY OF THE PERSONAL PROPERTY	
		TO THE PERSON OF
		4 124 4 124 124 124 124 124 124 124 124

Permit	Date:	Permit #:	

COMPANY Layne-Western Co.

FARM I-74&Prospect (Biedermans

DATE DRILLED NO. B-2

ELEVATION 0 COUNTY NO. 23514

LOCATION SE SE NE

LATITUDE 40.135416 **LONGITUDE** -88.259105

COUNTY Champaign API 120192351400 2 - 19N - 8E

Page 1 ILLINOIS COMMUNICATION RECEIVED LINE | 1/6/2021

Water Well	Top	Bottom
topsoil	0	
soft yellow clay with gravel	1	16
soft blue clay with gravel	16	53
coarse clean sand with boulders	53	60
Total Depth Casing: 4" 11# DRIVE from 0' to 56' Screen: 4' of 4" diameter 14 slot Water from sand at 53' to 60'. Static level 28' below casing top which is 1' above GL Pumping level 30' when pumping at 10 gpm for 1 hour Permanent pump installed at 40' Driller's Log filed		60
Owner Address: 1902 N. Prospect Champaign, IL Add'l loc. info: FALSE A-1 Television		THE RESIDENCE OF THE PROPERTY
Image viewing help: New users please read this. GET FILE IL State Water Survey Document		

Permit Date: September 5, 1975 Permit #: 40846

COMPANY Sims, Ronald M. Sr.

FARM Gray, James

DATE DRILLED September 15, 1975 NO. 1

ELEVATION 0 COUNTY NO. 21747

LOCATION 1975'N line, 140'W line of NW

LATITUDE 40.136367 **LONGITUDE** -88.257406

COUNTY Champaign API 120192174700 1 - 19N - 8E

ATTACHMENT 6

Illinois Environmental Protection Agency

1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276 • (217) 782-3397

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.19). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false, fictitious, or fraudulent material statement or representation, orally or in writing, to the Agency, or to a unit of local government to which the Agency has delegated authority under subsection (r) of Section 4 of this Act, related to or required by this Act, a regulation adopted under this Act, any federal law or regulation for which the Agency has responsibility, or any permit, term, or condition thereof, commits a Class 4 felony, and each such statement or writing shall be considered a separate Class 4 felony. A person who, after being convicted under paragraph 415 ILCS 5/44 (h)(8), violates paragraph 415 ILCS 5/44 (h)(8) a second or subsequent time, commits a Class 3 felony. (415 ILCS 5/44). This form has been approved by the Forms Management Center.

Leaking Underground Storage Tank Program Property Owner Summary

A.	Site Identification		
	IEMA Incident # (6- or 8-digit):	20200005 IEP	A LPC# (10-digit): 0419010543
	Site Name: Shree Kuber, Inc		
	Site Address (not a P.O. Box):	1406 N. Prospect Ave.	
	City: Champaign	County: Champaign	Zip Code: 61820
	Leaking UST Technical File		
	be implemented without approagent(s) of such person(s). The	nal controls, and other use restrictions, if val by the title holder(s) of record for the ese controls and restrictions will be ident ch must be recorded in the chain of title oldance of the NFR Letter.	above-named property or the ified in the No Further
В.		Institutional Controls and Land Use L	
	i ne following controls and rest	rictions are proposed for the above-name	ed site:
	Industrial/commercial land	d use limitation;	
	On-site groundwater restruster water supply;	iction prohibiting the use of groundwater	beneath the site as a potable
	An engineered barrier:	☐ Building, ☐ asphalt/concrete, or	Other:
	(description)		
	Concrete Base with no Su	ımps;	
	Building Control Technolo	gy: Existing Future	
	Groundwater ordinance:	☐ With a MOU; ☐ Without a MOI	J;
	Construction worker caution	on notification;	
	Maintain a clean soil barrie	er (indoor inhalation):	
	Other:		
	✓ None (There are no propo	sed institutional controls other than the N	NFR Letter.).

Property Ownership Declaration			
Report Title: 45-DAY REPORT - TIER 1 OBJECTIVES COMPLIANCE REPORT			
Report Date: February 28, 2020 I hereby affirm that I have reviewed the attached report entitled 45-DAY REPORT - TIER 1 OBJECTIVES			
COMPLIANCE REPORT and dated February 28, 2020, and that I accept the terms and conditions set forth therein, including any land use limitations, that apply to property I own. I further affirm that I have no objection the recording of a No Further Remediation Letter containing the terms and conditions identified in the report upon the property I own.			
Name of Property Owner: Shree Kuber, Inc.			
Name of Officer or Agent: Sunil Modi			
Mailing Address: 1406 N. Prospect Ave.			
City: Champaign			
State: Illinois			
Zip Code: 61820			
E-mail: sunnymodi@gmail.com			
Signature:			
Date: 3-10-30			
Site Description			
Real Estate Tax/Parcel Index Number:			
41-20-01-351-005			

Legal Description of Site (must be provided on a separate sheet):

C.

D.

SHREE KUBER, INC. – CHAMPAIGN
IEMA Incident No: 20200005; IEPA. LPC No. 0190105433

Legal Description

Lots 4 & 5 in Industrial Addition to the Original Town of Champaign, County of Champaign, State of Illinois.

Commonly Known As:

1406 N. Prospect Ave., Champaign, IL 61820

Parcel Identification Number

41-20-01-351-005

ATTACHMENT 7

Illinois Environmental Protection Agency

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

The Illinois EPA is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 - 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false, fictitious, or fraudulent material statement, orally or in writing, to the Illinois EPA commits a Class 4 felony. A second or subsequent offense after conviction is a Class 3 felony (415 ILCS 5/44(h) and 57.17). This form has been approved by the Forms Management Center.

Leaking Underground Storage Tank Program 20-Day Certification

A. Site Identification	on	'n	I
------------------------	----	----	---

IEMA Incident # (6- or 8-digit):	20200005	IEPA LPC # (10-digit)): <u>0190105433</u>
Site Name: Shree Kuber, Inc.			
Site Address (not a P.O. Box):	1406 N Prospect Ave.		
City: Champaign	County: Champaign	Zip Code: 61	820

B. Initial Abatement

- 1. I am/we are the owner and/or operator of the underground storage tank system(s) from which a release was reported under the IEMA incident correctly identified above;
- 2. As much of the regulated substance as necessary to prevent further release into the environment has been removed;
- 3. Any aboveground releases or exposed below ground releases have been visually inspected;
- 4. Further migration of the released substance into surrounding soils and groundwater has been prevented;
- 5. Monitoring and mitigation of any fire and safety hazards posed by vapors or free product that has migrated from the UST excavation zone and entered subsurface structures (such as sewers or basements) will continue:
- 6. Hazards posed by contaminated soils that are excavated or exposed as a result of release confirmation, site investigation, abatement, or corrective action activities have been remedied;
- 7. If the remedies included treatment or disposal of soils, the owner or operator has complied with 35 Ill. Adm. Code 722, 724, 725, and 807 through 815;
- 8. Measurement for the presence of a release has been conducted where contamination was most likely to be present at the UST site. In selecting sample types, sample locations and measurement methods, the nature of the stored substance, type of backfill, depth to groundwater, and other factors as appropriate for identifying the presence and source of the release have been considered; and
- An investigation to determine the possible presence of free product has been conducted, and, if applicable, free product removal is being conducted in accordance with 35 III. Adm. Code 731.164 or 734.215.

C. Land Trust

If the release involves one or more USTs that are the subject of a land trust, check here, proceed with completion of Section D, then complete and return the <u>Land Trust Beneficial Interest</u> Disclosure. If a land trust is involved, this and all documents requiring owner or operator signature must be signed by a beneficiary of the land trust with sufficient beneficial interest to meet the definition of "owner" or "operator" as defined by 35 III. Adm. Code 734 or 731.

If a land trust is not involved, proceed with completion of Section D below.

D. Signatures

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator	Consultant			
Name: Shree Kuber, Inc.	Company: Green Wave Consulting, LLC			
Contact: Subil Modi	Contact: Mike Bettenhausen			
Address: 1406 N. Prospect Ave.	Address: 4440 Ash Grove Drive, Suite A			
City: Champaign	City: Springfield			
State: Illinois	State: IL			
Zip Code: 61820	Zip Code: 62711			
Phone: 217-419-5424	E-mail: mikeb@greenwavecon.com			
Signature:	Phone: 217-726-7569 x260			
Date: 340-10	Signature: Des for Nike Belfenhausen			
	Date: 3-16-2020			
were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this report and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this report has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 Ill. Adm. Code 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].				
Licensed Professional Engineer or Geologist				
Name: Jeff Wienhoff				
Company: Green Wave Consulting, LLC	State: IL Zip Code: 1827 January 1062-05842			
Address: 4440 Ash Grove Drive, Suite A	WEN THE			
City: Springfield	State: IL Zip Code: 627 M			
III. Registration No.: 062-058441	L.P.E. or E.P.G. See GINEER OF			
License Expiration Date: Nov 30, 2021				
L.P.E. or P.G. Sea GINEER License Expiration Date: Nov 30, 2021 Signature: Date: L.P.E. or P.G. Sea GINEER OF L.P.E. o				

Illinois Environmental Protection Agency

Bureau of Land • 1021 North Grand Avenue East • P.O. Box 19276 • Springfield • Illinois • 62794-9276

The Agency is authorized to require this information under Section 4 and Title XVI of the Environmental Protection Act (415 ILCS 5/4, 5/57 – 57.17). Failure to disclose this information may result in a civil penalty of not to exceed \$50,000.00 for the violation and an additional civil penalty of not to exceed \$10,000.00 for each day during which the violation continues (415 ILCS 5/42). Any person who knowingly makes a false material statement or representation, orally or in writing, in any label, manifest, record, report, permit, or license, or other document filed, maintained or used for the purpose of compliance with Title XVI commits a Class 4 felony. Any second or subsequent offense after conviction hereunder is a Class 3 felony (415 ILCS 5/44 and 57.17). This form has been approved by the Forms Management Center.

Leaking Underground Storage Tank Program

	tion				
	(6- or 8-digit): 20200005	· IE	EPA LPC# (10-digit): 01901	05433	****
Site Name: Shre					
	t a P.O. Box): <u>1406 N. Pros</u>			· · · · · · · · · · · · · · · · · · ·	
City: Champaign		County: Champ	aign Zip Co	de: <u>61820</u>	
Release Infori	mation				
UST Volume (gallons)	Material Stored in UST	Release Yes / No	Type of Release Tank Leak / Overfill / Piping Leak	Product Removed? Yes / No	Tank Status Repaired / Removed / Abandoned / In Use
10,000	Diesel	Yes	Overfill	Yes	Removed
798-88-0-1					
)			
arly Action					
1. Does this rep	oort demonstrate that the	most stringent	Tier 1 remediation object	tives have be	en met? 🔽 Yes 🗌
If yes , the o	duct encountered? wner or operator must su ct removal will be conduc udget, if applicable) must	ted for more th	nan 45 days, a Free Prod	orm LPC 504) uct Removal	☐ Yes ☑
	or cafaty hazarda nagad	by vapors or f	ree product or contamina	ation to a	☐ Yes 🔽

IL 532 2277 45-Day Report LPC 503 Rev. April 2014

45-Day Report Page 1 of 4

	5. What was the volume of native soil excavated? 0	Yards ³
	6. Was groundwater encountered at the site?] Yes ✓ No
	7. Did the groundwater exhibit a sheen?	Yes 🗸 No
D. S	Site/Release Information	
	Provide the following:	
	 Data on the nature and estimated quantity of release; Data from available sources or site investigations cond 	cerning the following factors:
	a. Surrounding populations;b. Water quality;	
	c. Use and approximate locations of wells potentiallyd. Subsurface soil conditions;	affected by the release;
	e. Location of subsurface sewers;	
	f. Climatological conditions; andg. Land use;	
	A discussion of what was done to measure for the prespresent at the UST site;	sence of a release where contamination was most likely to be
	4. The results of the free product investigations;	
;	5. A discussion of the action taken to prevent further release	ase of the regulated substance into the environment;
(A discussion of the action taken to monitor and mitigate has migrated from the UST excavation zone and enter-	e fire and safety hazards posed by vapors or free product that ed subsurface structures; and
•	7. Any other information collected while performing initial or 734.210(b).	abatement measures pursuant to 35 III. Adm. Code 731.162
E. O	Other Information	
ı	Provide the following:	
,	1. An area map showing the site in relation to surrounding	properties;
2	2. A cross section, to scale, showing the UST(s) and the	excavation;
3	3. Analytical/screening results in tabular format including to Code 734.210(h) and the most stringent Tier 1 remedia	the results of soil samples required pursuant to 35 III. Adm.
4	4. Site map meeting the requirements of 35 III. Adm. Code	e 734.440 and including sample locations;
5	5. Soil boring logs;	
6	6. Chain of custody forms;	
7	7. Laboratory analytical reports;	
ε	8. Laboratory certifications;	
ę	9. A copy of the Office of the State Fire Marshal Permit for	Removal, Abandonment-in-Place, or other OSFM permits or

notifications;

- 10. A narrative of tank removal and cleaning operations; describe how wastes generated during the tank removal were managed, treated, and disposed of;
- 11. Photographs of UST removal activities and the excavation; and
- 12. Copies of manifests for soil and groundwater transported off-site.

F. Early Action Tier 1 Remediation Objectives Compliance Report

If the most stringent Tier 1 remediation objectives of 35 III. Adm. Code 742 for the applicable indicator contaminants have been met and a groundwater investigation is not required, in addition to the information provided above, provide the following:

- 1. Site characterization;
- 2. If water was encountered in the excavation, provide a demonstration pursuant to 35 III. Adm. Code 734.210(h)(4)(C) that it is not representative of actual groundwater; and
- 3. Property Owner Summary (form LPC 568).

G. Signatures

UST Owner or Operator Signature:

All plans, budgets, and reports must be signed by the owner or operator and list the owner's or operator's full name, address, and telephone number.

UST Owner or Operator and Licensed Professional Engineer or Licensed Professional Geologist Certification of Stage 1 Site Investigation Plan and Budget (applies to Part 734 sites continuing beyond early action):

Pursuant to 35 III. Adm. Code 734.315(b) and 734.310(b), I certify that the Stage 1 site investigation will be conducted in accordance with 35 III. Adm. Code 734.315 and that the costs of the Stage 1 site investigation will not exceed the amounts set forth in 35 III. Adm. Code 734.Subpart H, Appendix D, and Appendix E. This certification is intended to meet the requirements for a plan and budget for the Stage 1 site investigation required to be submitted pursuant to 35 III. Adm. Code 734.315 and 734.310.

Continue onto next page.

Licensed Professional Engineer or Licensed Professional Geologist Certification:

I certify under penalty of law that all activities that are the subject of this plan, budget, or report were conducted under my supervision or were conducted under the supervision of another Licensed Professional Engineer or Licensed Professional Geologist and reviewed by me; that this plan, budget, or report and all attachments were prepared under my supervision; that, to the best of my knowledge and belief, the work described in this plan, budget, or report has been completed in accordance with the Environmental Protection Act [415 ILCS 5], 35 III. Adm. Code 731, 732, or 734, and generally accepted standards and practices of my profession; and that the information presented is accurate and complete. I am aware there are significant penalties for submitting false statements or representations to the Illinois EPA, including but not limited to fines, imprisonment, or both as provided in Sections 44 and 57.17 of the Environmental Protection Act [415 ILCS 5/44 and 57.17].

UST Owner or Operator	Consultant
Name Shree Kuber, Inc.	Company Green Wave Consulting, LLC
Contact Sunil Modi	Contact Mike Bettenhausen
Address 1406 N Prospect Ave.	Address 4440 Ash Grove Drive, Suite A
City Champaign	City Springfield
State Illinois	State IL
Zip Code 61820	Zip Code 62711
Phone 217-419-5424	Phone 217-726-7569 x260
Signature	E-mail: mikeb@greenwavecon.com
Date	Signature Soften
	Date 3 110 2020

Licensed Professional Engineer or Geologist

Name Jeff Wienhoff			
Company Green Wave Consulting, LLC			
Address 4440 Ash Grove Drive, Suite A			
City Springfield			
State IL			
Zip Code 62711			
Phone 217-726-7569			
III. Registration No. 062-058441			
License Expiration Date 11/30/21			
Signature			
Date//3/6/20			

L.P.E. or L.P.G. Seal

LEAKING UST TECHNICAL REVIEW NOTES

Reviewed by: Nicole Cosenza Re: 0190105433 -- Champaign County

Date Reviewed: April 7, 2020 Champaign\Shree Kuber, Inc. 1406 North Prospect Avenue Leaking UST Incident 20200005

Leaking UST Technical File

Document(s) Reviewed:

45 Day/CACR Dated 3/16/2020 [Rec'd 3/17/2020]

General Site Information:

Site subject to: 734

IEMA date(s): 1/3/2020	Payment from the Fund? (Y/N/unknown): U
UST system removed? (Y/N): Y	OSFM Fac. ID #:
Encountered groundwater?: N	SWAP mapping and evaluation completion date: 4/7/2020
Free product? (Y/N/unknown): N	Site placement correct in SWAP?: Y
Current/past land use: Active convenience	Inspection Required?
store undergoing property redevelopment	
Size & product of USTs: 1-10,000 gallon dies	el fuel UST and piping
Is site located in EJ area? Y red (4/7/2020)	Is investigation of indoor inhalation exposure route required? N
Has enough sampling been completed to perform a Right-to-Know Evaluation? Y	PLA Checklist Complete? N/A

Consultant Information: Green Wave Consulting, LLC (Mike Bettenhausen)

Phone: (217)726-7569 Ext. 260 Email: mikeb@greenwavecon.com

BOL File Information:

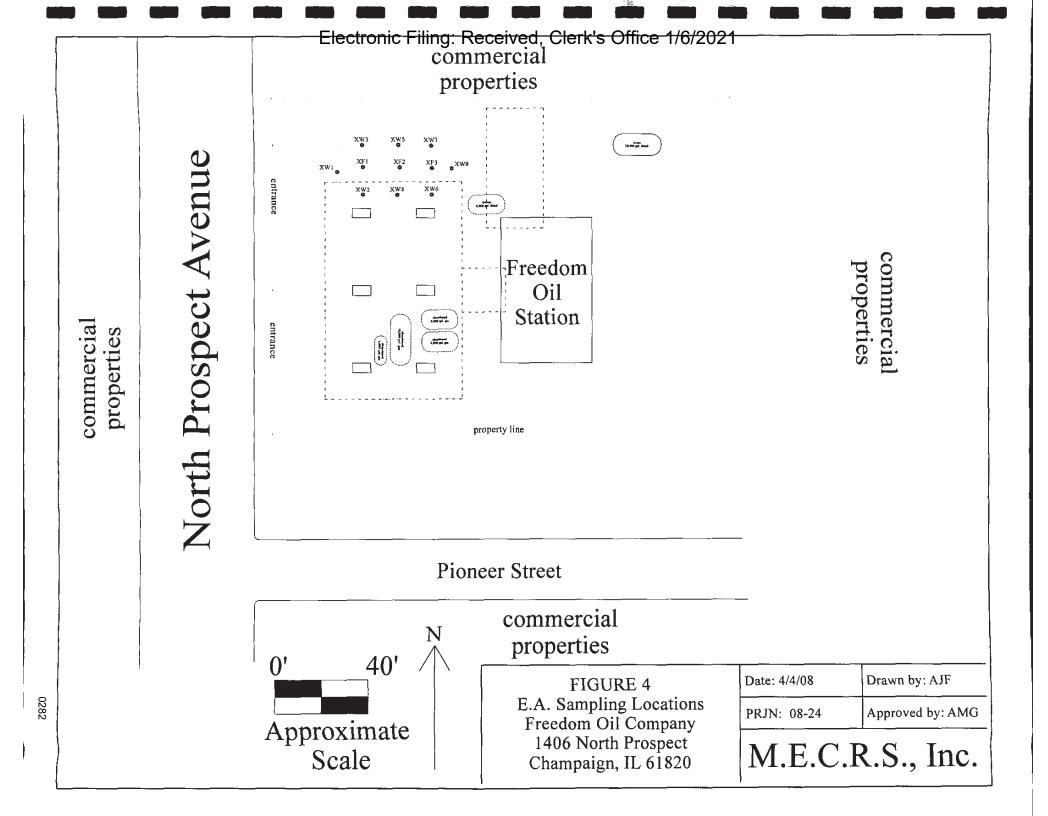
Incident # 20080255:

- 8 USTs associated with site.
- Notice of release letter sent 2/27/2008 for USTs #1-5 [Tank #1: 6,000 gallons diesel, Tank #2: 10,000 gallon gasoline, Tanks #3,4: 6,000 gallon gasoline, Tank #5: 2,000 gallon gasoline].
- Early Action Extension Request received 4/4/2008.
- Early Action Approval Letter sent 4/8/2008.
- 45-Day Report received at IEPA 6/11/2008.
 - A) 6,000 gallon diesel UST product release from tank overfill. Tank removed.

Page 2

- B) 2-6,000 gallon gasoline USTs, 1-10,000 gallon gasoline UST, 1-2,000 gallon gasoline UST abandoned in place. No releases reported for these tanks.
- C) The 45 Day Report for the 2008 incident stated that contaminated soils still remained on site after EA sampling.
- D) Fire marshall log states 20080255 is a contaminated site.
- E) No maps provided in the 45 Day Report show EA sample locations.
- F) No samples were collected around the piping associated with UST-1.
- Stage 1 results and stage 2 plan in DocuWare dated 8/14/2009.
- 45-Day Report Addendum received 9/2/2009.
 - A) Original 45-Day report dated 6/11/2008 listed no release from USTs #2-5. OSFM records indicate releases did occur from these tanks. Amended 45-Day Report submitted to IEPA.
 - B) 45-Day report reviewed by PM Mike Thorsen on 10/21/2009. Complete file review notes on DocuWare dated 10/21/2009.
- SICR review by PM Dave Meyers 8/4/2011.
- 10/17/2017 IEPA performed record review of incident 20080255 and informed
- owner/operator to contact Dave Meyers with additional information.
- Amended CAP/Budget submitted to IEPA dated 3/12/2018.
- Corrective Action Plan/Budget to address off site contamination reviewed by PM Dave Meyers 4/3/2018.
- IEPA sent letter requesting CAP modifications. PM Eric Kuhlman 6/6/2018.
- Consultant emails Dave Meyers regarding highway authority agreement 11/1/2018.
- Consultant submits amended CAP budget 11/26/2018 to Dave Meyers.
- Dave Meyers reviews amended CAP budget. Notes dated 12/10/2018. Budget denied per managers 10/11/18 review.
- Budget rejection letter sent 12/14/2018. PM Dave Meyers.

45-Day Report/CACR Review Notes (Rec'd 3/17/2020):


- Subsurface investigation indicated hydrocarbon impacted soil surrounding the diesel UST system (Tank # 6) (no date listed for investigation). Tank last used 12/19/18.
- Soil sampling indicated petroleum release around the UST system. Release was reported to IEMA on January 3, 2020 for 1-10,000 gallon diesel fuel UST and associated piping. Assigned incident number 20200005.
- Quantity of release is not known.
- January 21, 2020 Earth Services initiated dispenser removal and UST uncovering.
- January 22, 2020 GFL Environmental pumped down 3,000 gallons of residual fuel/water from the UST, along with visible impacted water from the tank pit.
- No groundwater recharge was detected in the pit on either January 23 or 24, 2020.
- UST was vented and tested to ensure lower explosive limit levels were less than 5% before continuing with tank removal, inspection and cleaning.

Page 3

- Mr. Bruce Billman (OSFM Storage Tank Safety Specialist) confirmed indications of release with visual and olfactory indication of contaminated soils during removal of the UST and associated piping.
- UST was cleaned, crushed and disposed of, along with piping, at PDC Landfill in Clinton, IL
- Backfill soils displayed moderate hydrocarbon odors and staining.
- 209.8 cubic yards of impacted backfill soils were removed and disposed offsite at Clinton, IL landfill (manifest included).
- Remaining native sidewalls and floor of the UST cavity showed areas of light to moderate hydrocarbon impaction, but all confirmation sample results were below applicable Tier 1 objectives.
- 12 soil confirmation samples were collected from sidewalls, floor, and piping trench.
- Confirmation samples displayed visual and olfactory indications of hydrocarbon impaction.
- PID readings for all 12 samples were above 1 ppm. PID readings ranged from 1.8 ppm in sample CS-8 up to 182 ppm in sample CS-6 and CS-11.
- 12 samples were analyzed by PDC Laboratories in Springfield, IL for diesel fuel indicator contaminants: benzene, toluene, ethylbenzene, xylenes (BTEX), MTBE, and PNAs.
- None of the 12 samples tested displayed indicator contaminants above the most stringent Tier 1 ROs.
- Free product was not encountered during early action sampling.
- No potable wells within 200 feet of site. No CWS within 2500 feet of site.
- Owner/operator requesting NFR.

Illinois EPA Decision:

• Per Agency manager's meeting 6/16/2020, incident 2020005 is a re-reporting of incident 20080255 due to the soil indicator contaminant concentrations present at the UST do not indicate a new release, and the UST is within the plume of the previous incident based on CAP map submitted to Agency.

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	East Floor (EF) 04/02/08	West Floor (WF) 04/02/08	North Wall (NW) 04/02/08	South Wall (SW) 04/02/08	East Wall (EW) 04/02/08	West Wall (WW) 04/02/08
Benzene	30	4.4	<2.3	410	18.6	50.6	3.5 M
Toluene	12,000	4.1	3.0	<141	<2.4	<10.3	<2.3
Ethylbenzene	13,000	26.4	8.0	2,490	18.3	296	7.6 M
Total Xylenes	150,000	45.2	23.1	4,820	116	312	25.5 M
мтве	320	<2.3 <2.3		<141	<2.4	<10.3	<2.3
PNAs	$\geq \leq$	$\geq \!$	$\geq \leq$	$\geq \!$	$\geq \leq$	$\geq \leq$	$>\!\!<$
Acenapthene	570,000	<81.3	<77.7	<77.6	<78.7	80.9	<79.4
Acenapthylene	xx	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Anthracene	12,000,000	<243	<232	<232	<235	<236	<237
Benzo (a) Anthracene	2,000	<243	<232	<232	<235	<236	<237
Benzo (a) Pyrene	8,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Benzo (b) Fluoranthene	5,000	<404	<386	<386	<391	<394	<395
Benzo (g,h,i) Perylene	xx	<243	<232	<232	<235	<236	<237
Benzo (k) Fluoranthene	49,000	<243	<232	<232	<235	<236	<237
Chrysene	160,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Dibenzo (a,h) Anthracene	2,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluoranthene	4,300,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluorene	560,000	<81.3	<77.7	<77.6	84.0	<79.2	<79.4
Ideno (1,2,3-cd) Pyrene	14,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Naphthalene	84,000	<81.3	<77.7	121	<78.7	147	<79.4
Phenanthrene	xx	<81.3	<77.7	106	79.1	164	<79.4
Pyrene	4,200,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Landfill 1 (LF-1) 04/01/08	Landfill 2 (LF-2) 04/01/08	Landfill 3 (LF-3) 04/01/08	Exc Floor 1 (XF1) 4/3/008	Exc Floor 2 (XF2) 4/3/008	Exc Floor 3 (XF3) 4/3/008	Exc Wall 1 (XW1) 4/3/008
Benzene	30	<2.5	280	923	<2.5_	<2.3	<2.4	24.7
Toluene	12,000	5.6	<164	<311	7.6	<2.3	<2,4	283
Ethylbenzene	13,000	<2.5	201	2,150_	4.0	<2.3	<2.4	99,1
Total Xylenes	150,000	<6.2	1,140	2,960	15.2	<5.8	<6.0	652
мтве	320	NA	NA	NA	<2.5	<2.3	<2.4	<11.7
PNAs	\gg	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$\geq \leq$	$>\!\!\!<$	$\geq \leq$
Acenapthene	570,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Acenapthylene	XX	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Anthracene	12,000,000	<251	<268	<250	<251	<236	<241_	<255
Benzo (a) Anthracene	2,000	<251	<268	<250	<251	<236	<241	<255
Benzo (a) Pyrene	8,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Benzo (b) Fluoranthene	5,000	<417	<447	<416	<418	<393	<401	<425
Benzo (g,h,i) Perylene	xx	<251	<268	<250	<251	<236	<241	<255
Benzo (k) Fluoranthene	49,000	<251	<268	<250	<251	<236	<241	<255
Chrysene	160,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Dibenzo (a,h) Anthracene	2,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluoranthene	4,300,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluorene	560,000	<84.0	<89,9	<83.8	<84.2	<79.1	<80.6	<85.5
Ideno (1,2,3-cd) Pyrene	14,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Naphthalene	84,000	<84.0	<89.9	514	<84.2	<79.1	<80.6	<85.5
Phenanthrene	XX	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Pyrene	4,200,000	<84.0	<89. 9	<83.8	<84.2	<79.1	<80.6	<85.5

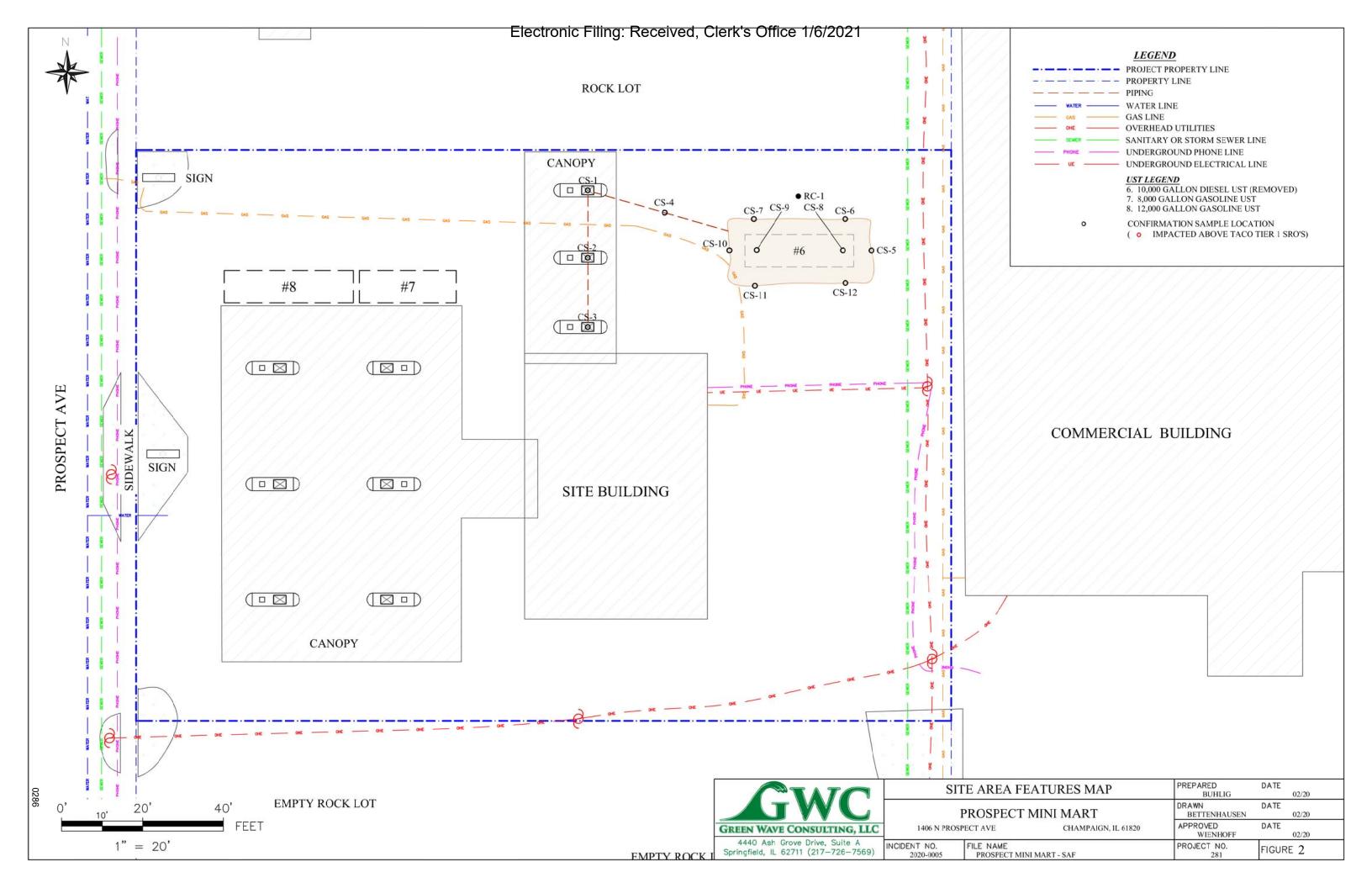
ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

M = Matrix interferences identified

Page 3 of 3


TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Exc Wall 2 (XW2) 04/03/08	Exc Wall 3 (XW3) 04/03/08	Exc Wall 4 (XW4) 04/03/08	Exc Wall 5 (XW5) 04/03/08	Exc Wall 6 (XW6) 04/03/08	Exc Wall 7 (XW7) 04/03/08	Exc Wall 8 (XW8) 04/03/08
Benzene	30	67.7	<2.3	<2.2	<2.3	<2.4	5.4	5.1
Toluene	12,000	285	23,1	<2.2	<2.3	<2.4	2.4	<2.3
Ethylbenzene	13,000	29.2	9.5	2,3	<2.3	3.0 M	9.1	229
Total Xylenes	150,000	139	48.7	<5.6	<5.8	6.2 M	10.6	85.2
мтве	320	<2.4	<2.3	<2.2	<2.3	<2.4	<2.3	<2.3
PNAs		$>\!\!<$	$>\!\!<$	×	$>\!\!<$	\times	$\geq \leq$	\boxtimes
Acenapthene	570,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Acenapthylene	XX	<80.0	<78.0	< 7 7.0	<78.6	<81.6	<78.5	<78.0
Anthracene	12,000,000	<239	<233	<230	<235	<244	<234	<233
Benzo (a) Anthracene	2,000	<239	<233_	<230	<235	<244	<234	<233
Benzo (a) Pyrene	8,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Benzo (b) Fluoranthene	5,000	<398	<388	<383	<391	<406	<390	<388
Benzo (g,h,i) Perylene	XX	<239	<233	<230	<235	<244	<234	<233
Benzo (k) Fluoranthene	49,000	<239	<233	<230	<235	<244	<234	<233
Chrysene	160,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Dibenzo (a,h) Anthracene	2,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluoranthene	4,300,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluorene	560,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Ideno (1,2,3-cd) Pyrene	14,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Naphthalene	84,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	626
Phenanthrene	ХХ	<80.0	<78.0	<77.0	<78.6	<81,6	<78.5	107
Pyrene	4,200,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

Page 1 of 6

SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-1 3' 08/19/08	MW-1 7' 08/19/08	MW-1 13' 08/19/08	MW-1 17' 08/19/08	MW-2 3' 08/19/08	MW-2 9' 08/19/08	MW-2 15' 08/19/08
MTBE	320	<mdl< td=""><td><mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<>	73.9	21.3	<mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<>	<mdl< td=""><td>13.6</td></mdl<>	13.6
Benzene	30	<mdl< td=""><td>140</td><td>2.2</td><td>1.9</td><td>4.3</td><td>13.1</td><td>3.0</td></mdl<>	140	2.2	1.9	4.3	13.1	3.0
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<>	2.9	2.3	2.7	<mdl< td=""><td>5.4</td></mdl<>	5.4
Ethylbenzene	13,000	5.0	5,460	2.2	<mdl< td=""><td>2.8</td><td>61.5</td><td>• 3.1</td></mdl<>	2.8	61.5	• 3.1
Total Xylenes	5,600	7.1	519	<mdl< td=""><td><mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<></td></mdl<>	<mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<>	7.3	124	7.4
PNAs	$\gg <$	\times	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	\times	×
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""></mdl<></td></midl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	127	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>. <mdl< td=""></mdl<></td></mdl<>	. <mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	84.6	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td>190</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	190	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx ·	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	570	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 2 of 6

Electronic Filing: Received, Clerk's Office 1/6/2021 TABLE 1.

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-3 5' 08/19/08	MW-3 7' 08/19/08	MW-3 13' 08/19/08	MW-4 3' 08/19/08	MW-4 7' 08/19/08	MW-4 13' 08/19/08	MW-5 3' 08/19/08
MTBE	320	<mdl< td=""><td><mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	26.0	<mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<>	6.3	<mdl< td=""></mdl<>
Benzene	30	6,350	3,120	2.9	<mdl< td=""><td>3.1</td><td>3.1</td><td><mdl< td=""></mdl<></td></mdl<>	3.1	3.1	<mdl< td=""></mdl<>
Toluene	12,000	514	619	2.4	<mdl< td=""><td>4.5</td><td>5.5</td><td>1.6</td></mdl<>	4.5	5.5	1.6
Ethylbenzene	13,000	11,500	106,000	3.7	<mdl< td=""><td>9.5</td><td>4.0</td><td><mdl< td=""></mdl<></td></mdl<>	9.5	4.0	<mdl< td=""></mdl<>
Total Xylenes	5,600	27,400	428,000	10.9	<mdl< td=""><td>14.0</td><td>9.1</td><td><mdl< td=""></mdl<></td></mdl<>	14.0	9.1	<mdl< td=""></mdl<>
PNAs	$\gg <$	$>\!\!<$	$>\!\!<$	\times	$>\!\!<$	×	\times	\times
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	хх	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl_<></td></mdl<>	<mdl_< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl_<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	205	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl ^<="" td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl></td></mdl<>	<mdl ^<="" td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	367	2,830	<mdl< td=""><td><mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<></td></mdl<>	<mdl_< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl_<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx	106	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	209	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 3 of 6

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-5 7' 08/19/08	MW-5 13' 08/19/08	B-1 3' 01/25/11	B-1 7' 01/25/11	B-1 12' 01/25/11	B-2 3' 01/25/11	B-2 7' 01/25/11
MTBE	320	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></midl<>	<mdl< td=""><td><midl< td=""></midl<></td></mdl<>	<midl< td=""></midl<>
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.36	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<>	· <mdl< td=""></mdl<>
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs	$\gg <$	\times	\times	×	\times	×	\times	\times
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	ХX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	ХХ	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 4 of 6

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	B-2 12' 01/25/11	MW-6 3' 03/24/11	MW-6 7' 03/24/11	MW-7 3' 03/24/11	MW-7 7' 03/24/11	MW-8 3' 03/24/11	MW-8 7' 03/24/11
MTBE	320	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	4.65	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs	$>\!\!<$	$>\!\!<$	${\color{red} >\!\!\! >}$	$>\!\!\!<$	\times	\times	$\geq \leq$	\times
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<>	· <mdl< td=""><td><midl< td=""></midl<></td></mdl<>	<midl< td=""></midl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<></td></mdl<>	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	хх	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 5 of 6

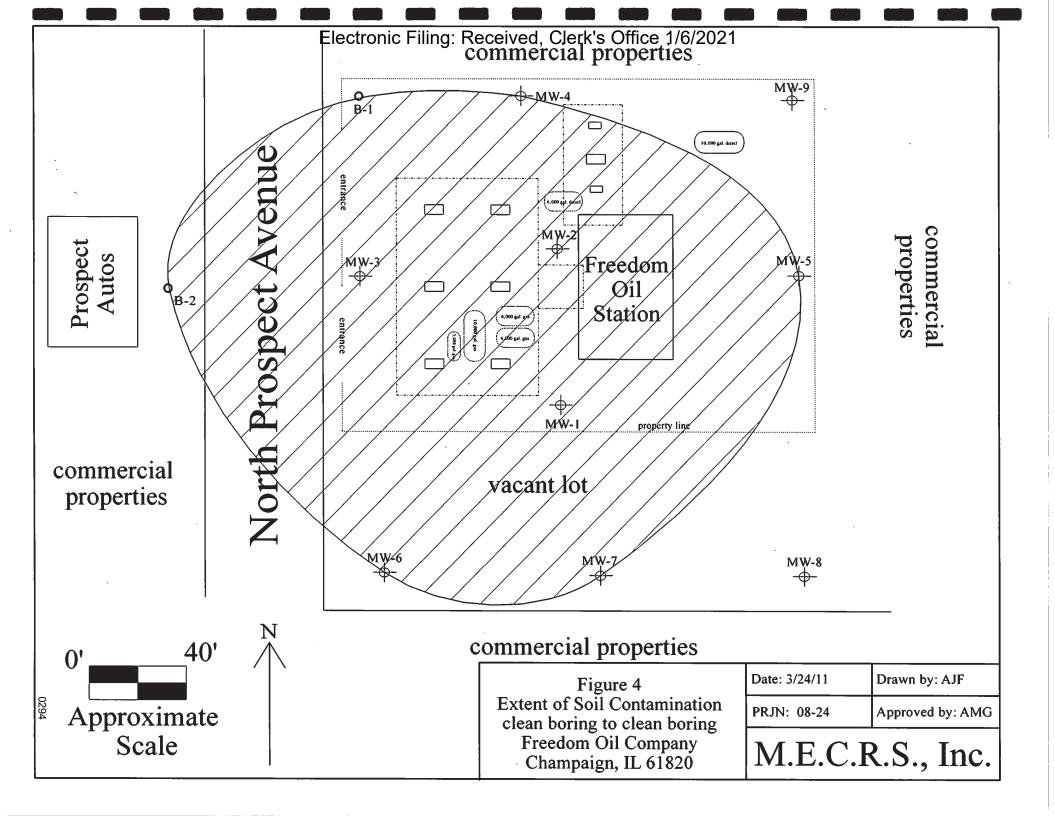
Analytes/ Sample ID:	Tier I Soil	MW-9 3'	MW-9 7'	B-3 3'	B-3 8'	B-4 3'	B-4 8'	B-5 3'
SAMPLE DATE	Remediation Obj.	03/24/11	03/24/11	10/24/17	10/24/17	10/24/17	10/24/17	10/24/17
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td><26</td><td><25</td><td><27</td><td><26</td><td><27</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td><25</td><td><27</td><td><26</td><td><27</td></mdl<>	<26	<25	<27	<26	<27
Benzene	30	<mdl< td=""><td><mdl< td=""><td><26</td><td>290</td><td>190</td><td>160</td><td>230</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td>290</td><td>190</td><td>160</td><td>230</td></mdl<>	<26	290	190	160	230
Toluene	12,000	<mdl< td=""><td>9.06</td><td><26</td><td><25</td><td>59</td><td><26</td><td><27</td></mdl<>	9.06	<26	<25	59	<26	<27
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><26</td><td>1,300</td><td>250</td><td>95</td><td>260</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td>1,300</td><td>250</td><td>95</td><td>260</td></mdl<>	<26	1,300	250	95	260
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td>230</td><td>95</td><td>550</td><td><79</td><td>400</td></mdl<></td></mdl<>	<mdl< td=""><td>230</td><td>95</td><td>550</td><td><79</td><td>400</td></mdl<>	230	95	550	<79	400
PNAs	$\gg <$	$>\!\!<$	\times	$>\!\!<$	$>\!\!<$	\times	\times	$>\!\!<$
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td>14</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>14</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	14	<8.3	<8.8	<8.6	<8.8
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td>13</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>13</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	13	<8.3	<8.8	<8.6	<8.8
Benzo (g,h,i) Perylene	XX	<mdl< td=""><td><mdl< td=""><td>40</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>40</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	40	<8.3	<8.8	<8.6	<8.8
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td>8.5</td><td><4.2</td><td><4.5</td><td><4.4</td><td><4.4</td></mdl<></td></mdl<>	<mdl< td=""><td>8.5</td><td><4.2</td><td><4.5</td><td><4.4</td><td><4.4</td></mdl<>	8.5	<4.2	<4.5	<4.4	<4.4
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td>32</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>32</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	32	<8.3	<8.8	<8.6	<8.8
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td>30</td><td><8.3</td><td><8.8</td><td><8.6</td><td>15</td></mdl<></td></mdl<>	<mdl< td=""><td>30</td><td><8.3</td><td><8.8</td><td><8.6</td><td>15</td></mdl<>	30	<8.3	<8.8	<8.6	15
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td>350</td><td>350 `</td><td><88</td><td>160</td><td>300</td></mdl<></td></mdl<>	<mdl< td=""><td>350</td><td>350 `</td><td><88</td><td>160</td><td>300</td></mdl<>	350	350 `	<88	160	300
Phenanthrene	хх	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Рутепе	4,200,000	<mdl< td=""><td><mdl< td=""><td>23</td><td><8.3</td><td><8.8 ·</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>23</td><td><8.3</td><td><8.8 ·</td><td><8.6</td><td><8.8</td></mdl<>	23	<8.3	<8.8 ·	<8.6	<8.8

SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

		B-5	B-6	B-6	1			1
Analytes/ Sample ID:	Tier I Soil	7'	4'	7'	1			
SAMPLE DATE	Remediation Obj.	10/24/17	10/24/17	10/24/17]	
						Ì	i	
MTBE	320	<27	31	<29				
_								
Benzene	30	410	1,300	420				
Toluene	12,000	<27	670	230		1		
10100110	72,000		• • • • • • • • • • • • • • • • • • • •		-			
Ethylbenzene	13,000	250	1,200	340				
Total Xylenes	5,600	170	5,600	1,900				
PNAs								
		.0.		.00				
Acenapthene	570,000	<86	280	<90	-			
Acenapthylene	xx	<86	<90	<90			i	
rteenaparyiene	7.7.		- 70	- ,,				
Anthracene	12,000,000	<86	440	180				
Benzo (a) Anthracene	2,000	<8.6	23	140				
Benzo (a) Pyrene	800	<8.6	210	<9.0				
Belizo (a) Pytene	800	₹8.0	210	17.0	 			
Benzo (b) Fluoranthene	5,000	<8.6	330	150				
Benzo (g,h,i) Perylene	XX	<8.6	220	170				
Panna (Is) Elwarenthana	49,000	<4.3	96	56				
Benzo (k) Fluoranthene	49,000	\4.3	90	30				
Chrysene	160,000	<8.6	380	230				
Dibenzo (a,h)								
Anthracene	800	<8.6	<9.0	19				
Elmanneth and	4 200 000	<8.6	640	270	1			
Fluoranthene	4,300,000	₹8.0	040	210				
Fluorene	560,000	<86	<90	<90				
			:					
Ideno (1,2,3-cd) Pyrene	8,000	<8.6	130	77				
Nauhahalana	1 000	180	150	160				
Naphthalene	1,800	190	100	100				
Phenanthrene	xx	<86	720	480				
Pyrene	4,200,000	<8.6	520	220				

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.


NA = not analyzed

M = Matrix interferences identified

TACO Parameters

Sample #	foc	pН	Bulk Density,	Particle Density	% Moisture	Porosity
Surface	2.90%	7.40	1.26	2.52	42.8%	0.50
Subsurface	0.87%	7.77	1.50	2.64	27.8%	0.43

From: Benanti, Trent
To: Cosenza, Nicole

Subject: FW: June 16, 2020 Managers Meeting - Freedom Oil Company & Shree Kuber, Inc. - Leaking UST Incidents

20080255 & 20200005

Date: Tuesday, June 16, 2020 3:15:05 PM

Attachments: 2008 45 DAY.pdf

2018 CAP.pdf 2020 45 DAY.pdf

I discussed this site with the managers this morning. We determined Incident 20200005 is a rereporting of Incident 20080255.

Please copy Brian Bauer on the Re-Reporting Letter.

Thank you,

Trent L. Benanti, P.E. Unit Manager

Leaking UST Program

Illinois EPA

Phone: (217) 524-4649

Email: trent.benanti@illinois.gov

From: Benanti, Trent

Sent: Monday, June 15, 2020 3:37 PM

To: Dunn, Greg <Greg.Dunn@Illinois.gov>; Lowder, Mike <Mike.Lowder@Illinois.gov>; Bauer, Brian

P. <Brian.Bauer@Illinois.gov>; Putrich, Steve <Steve.Putrich@Illinois.gov>; Kaiser, Karl

<Karl.Kaiser@Illinois.gov>

Cc: Cosenza, Nicole < Nicole. Cosenza@Illinois.gov>

Subject: June 16, 2020 Managers Meeting - Freedom Oil Company & Shree Kuber, Inc. - Leaking UST Incidents 20080255 & 20200005

Incident 20080255 (Freedom Oil Company + MECRS)

• Tank 1 (6,000-gallon diesel fuel) was removed.

Tank 2 (10,000-gallon gasoline) was abandoned in place.

Tank 3 (6,000-gallon gasoline) was abandoned in place.

Tank 4 (6,000-gallon gasoline) was abandoned in place.

Tank 5 (2,000-gallon gasoline) was abandoned in place.

Tank 6 (10,000-gallon diesel fuel) remained in service.

Tank 7 (8,000-gallon premium gasoline) was installed.

Tank 8 (12,000-gallon regular gasoline) was installed.

- Tanks 2 through 5 served the dispensers under the larger canopy. Tanks 1 and 6 served the dispensers under the smaller canopy.
- Soil samples XF1-XF3 and XW1-XW8 were collected from the excavation associated with the

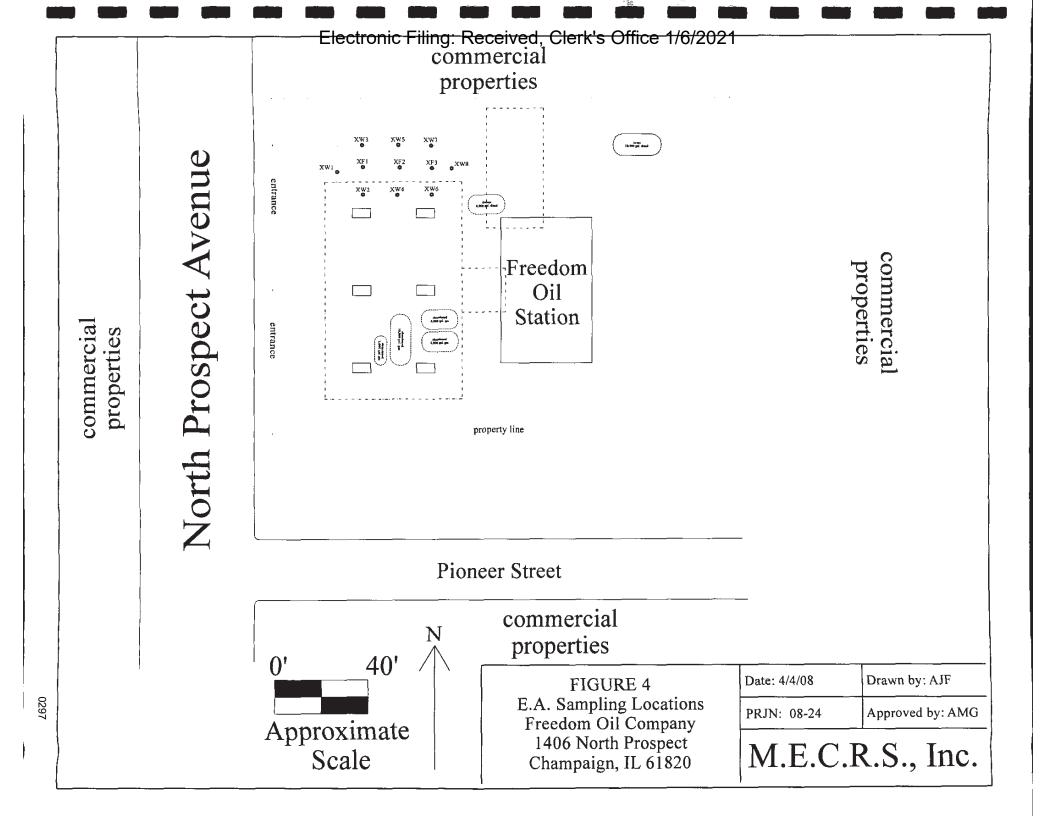
installation of Tanks 7 and 8.

- Soil samples EF, WF, EW, NW, SW, and WW were collected from the excavation associated with the removal of Tank 1.
- Soil samples were collected from six soil borings (B-1 B-6) and nine monitoring wells (MW-1 MW-9).
- See 2008 45 Day.pdf and 2018 CAP.pdf for site maps and soil analytical tables. It should be noted that none of the site maps show the piping or soil samples EF, WF, EW, NW, SW, and WW.

Incident 20200005 (Shree Kuber, Inc. + Green Wave Consulting, LLC)

- Tank 6 (10,000-gallon diesel fuel) and associated piping were removed.
- Soil samples CS-1 through CS-12 were collected.
- See 2020 45 DAY.pdf for a site map and soil analytical table.
- Groundwater was not encountered (no recharge).

Question


Is Incident 20200005 are re-reporting of Incident 20080255?

Trent L. Benanti, P.E. Unit Manager Leaking UST Program Illinois EPA

Phone: (217) 524-4649

Email: trent.benanti@illinois.gov

State of Illinois - CONFIDENTIALITY NOTICE: The information contained in this communication is confidential, may be attorney-client privileged or attorney work product, may constitute inside information or internal deliberative staff communication, and is intended only for the use of the addressee. Unauthorized use, disclosure or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments. Receipt by an unintended recipient does not waive attorney-client privilege, attorney work product privilege, or any other exemption from disclosure.

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	East Floor (EF) 04/02/08	West Floor (WF) 04/02/08	North Wall (NW) 04/02/08	South Wall (SW) 04/02/08	East Wall (EW) 04/02/08	West Wall (WW) 04/02/08
Benzene	30	4.4	<2.3	410	18.6	50.6	3.5 M
Toluene	12,000	4.1	3.0	<141	<2.4	<10.3	<2.3
Ethylbenzene	13,000	26.4	8.0	2,490	18.3	296	7.6 M
Total Xylenes	150,000	45.2	23.1	4,820	116	312	25.5 M
мтве	320	<2.3	<2.3	<141	<2.4	<10.3	<2.3
PNAs	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$\geq \leq$	$\geq \!$	$>\!$
Acenapthene	570,000	<81.3	<77.7	<77.6	<78.7	80.9	<79.4
Acenapthylene	XX	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Anthracene	12,000,000	<243	<232	<232	<235	<236	<237
Benzo (a) Anthracene	2,000	<243	<232	<232	<235	<236	<237
Benzo (a) Pyrene	8,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Benzo (b) Fluoranthene	5,000	<404	<386	<386	<391	<394	<395
Benzo (g,h,i) Perylene	XX	<243	<232	<232	<235	<236	<237
Benzo (k) Fluoranthene	49,000	<243	<232	<232	<235	<236	<237
Chrysene	160,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Dibenzo (a,h) Anthracene	2,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluoranthene	4,300,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Fluorene	560,000	<81.3	<77.7	<77.6	84.0	<79.2	<79.4
Ideno (1,2,3-cd) Pyrene	14,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4
Naphthalene	84,000	<81.3	<77.7	121	<78.7	147	<79.4
Phenanthrene	XX	<81.3	<77.7	106	79.1	164	<79.4
Pyrene	4,200,000	<81.3	<77.7	<77.6	<78.7	<79.2	<79.4

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Landfill 1 (LF-1) 04/01/08	Landfill 2 (LF-2) 04/01/08	Landfill 3 (LF-3) 04/01/08	Exc Floor 1 (XF1) 4/3/008	Exc Floor 2 (XF2) 4/3/008	Exc Floor 3 (XF3) 4/3/008	Exc Wall 1 (XW1) 4/3/008
Benzene	30	<2.5	280	923	<2.5_	<2.3	<2.4	24.7
Toluene	12,000	5.6	<164	<311	7.6	<2.3	<2.4	283
Ethylbenzene	13,000	<2.5	201	2,150_	4.0	<2.3	<2,4	99,1
Total Xylenes	150,000	<6.2	1,140	2,960	15.2	<5.8	<6.0	652
мтве	320	NA	NA	NA	<2.5	<2.3	<2.4	<11.7
PNAs	\gg	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$	$\geq \leq$	$>\!\!\!<$	$\geq \leq$
Acenapthene	570,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Acenapthylene	XX	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Anthracene	12,000,000	<251	<268	<250	<251	<236	<241_	<255
Benzo (a) Anthracene	2,000	<251	<268	<250	<251	<236	<241	<255
Benzo (a) Pyrene	8,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Benzo (b) Fluoranthene	5,000	<417	<447	<416	<418	<393	<401	<425
Benzo (g,h,i) Perylene	xx	<251	<268	<250	<251	<236	<241	<255
Benzo (k) Fluoranthene	49,000	<251	<268	<250	<251	<236	<241	<255
Chrysene	160,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Dibenzo (a,h) Anthracene	2,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluoranthene	4,300,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Fluorene	560,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Ideno (1,2,3-cd) Pyrene	14,000	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Naphthalene	84,000	<84.0	<89.9	514	<84.2	<79.1	<80.6	<85.5
Phenanthrene	XX	<84.0	<89.9	<83.8	<84.2	<79.1	<80.6	<85.5
Pyrene	4,200,000	<84.0	<89. 9	<83.8	<84.2	<79.1	<80.6	<85.5

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

Page 3 of 3

TABLE 1. SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	Exc Wall 2 (XW2) 04/03/08	Exc Wall 3 (XW3) 04/03/08	Exc Wall 4 (XW4) 04/03/08	Exc Wall 5 (XW5) 04/03/08	Exc Wall 6 (XW6) 04/03/08	Exc Wall 7 (XW7) 04/03/08	Exc Wall 8 (XW8) 04/03/08
Benzene	30	67.7	<2.3	<2.2	<2.3	<2.4	5.4	5.1
Toluene	12,000	285	23,1	<2.2	<2.3	<2.4	2.4	<2.3
Ethylbenzene	13,000	29.2	9.5	2,3	<2.3	3.0 M	9.1	229
Total Xylenes	150,000	139	48.7	<5.6	<5.8	6.2 M	10.6	85.2
мтве	320	<2.4	<2.3	<2.2	<2.3	<2.4	<2.3	<2.3
PNAs		$>\!\!<$	$>\!\!<$	$>\!\!<$	$\geq \leq$	$>\!\!\!<$	$\geq \leq$	\sim
Acenapthene	570,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Acenapthylene	XX	<80.0	<78.0	< 7 7.0	<78.6	<81.6	<78.5	<78.0
Anthracene	12,000,000	<239	<233	<230	<235	<244	<234	<233
Benzo (a) Anthracene	2,000	<239	<233_	<230	<235	<244	<234	<233
Benzo (a) Pyrene	8,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Benzo (b) Fluoranthene	5,000	<398	<388	<383	<391	<406	<390	<388
Benzo (g,h,i) Perylene	XX	<239	<233	<230	<235	<244	<234	<233
Benzo (k) Fluoranthene	49,000	<239	<233	<230	<235	<244	<234	<233
Chrysene	160,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Dibenzo (a,h) Anthracene	2,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluoranthene	4,300,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Fluorene	560,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Ideno (1,2,3-cd) Pyrene	14,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0
Naphthalene	84,000	<80.0	<78.0	<77.0	<78.6	<8.18>	<78.5	626
Phenanthrene	ХХ	<80.0	<78.0	<77.0	<78.6	<81,6	<78.5	107
Pyrene	4,200,000	<80.0	<78.0	<77.0	<78.6	<81.6	<78.5	<78.0

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)

XX = Tier 1 soil remediation objective not listed in TACO tables.

NA = not analyzed

Page 1 of 6

SOIL ANALYTICAL RESULTS

Freedom Oil Company Champaign, IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-1 3' 08/19/08	MW-1 7' 08/19/08	MW-1 13' 08/19/08	MW-1 17' 08/19/08	MW-2 3' 08/19/08	MW-2 9' 08/19/08	MW-2 15' 08/19/08
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>73.9</td><td>21.3</td><td><mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<></td></mdl<>	73.9	21.3	<mdl< td=""><td><mdl< td=""><td>13.6</td></mdl<></td></mdl<>	<mdl< td=""><td>13.6</td></mdl<>	13.6
Benzene	30	<mdl< td=""><td>140</td><td>2.2</td><td>1.9</td><td>4.3</td><td>13.1</td><td>3.0</td></mdl<>	140	2.2	1.9	4.3	13.1	3.0
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>2.9</td><td>2.3</td><td>2.7</td><td><mdl< td=""><td>5.4</td></mdl<></td></mdl<>	2.9	2.3	2.7	<mdl< td=""><td>5.4</td></mdl<>	5.4
Ethylbenzene	13,000	5.0	5,460	2.2	<mdl< td=""><td>2.8</td><td>61.5</td><td>• 3.1</td></mdl<>	2.8	61.5	• 3.1
Total Xylenes	5,600	7.1	519	<mdl< td=""><td><mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<></td></mdl<>	<mdl< td=""><td>7.3</td><td>124</td><td>7.4</td></mdl<>	7.3	124	7.4
PNAs	\gg	\times	$>\!\!<$	$>\!\!<$	$>\!\!<$	\times	\times	×
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	127	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""><td><mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	· <mdl< td=""><td><mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>- <mdl< td=""></mdl<></td></mdl<>	- <mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>۰ <mdl< td=""></mdl<></td></mdl<>	۰ <mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	84.6	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td>190</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	190	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx ·	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	570	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 2 of 6

Electronic Filing: Received, Clerk's Office 1/6/2021 TABLE 1.

SOIL ANALYTICAL RESULTS Freedom Oil Company

riecuom On Co	mpa
Champaign,	IL

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-3 5' 08/19/08	MW-3 7' 08/19/08	MW-3 13' 08/19/08	MW-4 3' 08/19/08	MW-4 7' 08/19/08	MW-4 13' 08/19/08	MW-5 3' 08/19/08
MTBE	320	<mdl< td=""><td><mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>26.0</td><td><mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	26.0	<mdl< td=""><td><mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>6.3</td><td><mdl< td=""></mdl<></td></mdl<>	6.3	<mdl< td=""></mdl<>
Benzene	30	6,350	3,120	2.9	<mdl< td=""><td>3.1</td><td>3.1</td><td><mdl< td=""></mdl<></td></mdl<>	3.1	3.1	<mdl< td=""></mdl<>
Toluene	12,000	514	619	2.4	<mdl< td=""><td>4.5</td><td>5.5</td><td>1.6</td></mdl<>	4.5	5.5	1.6
Ethylbenzene	13,000	11,500	106,000	3.7	<mdl< td=""><td>9.5</td><td>4.0</td><td><mdl< td=""></mdl<></td></mdl<>	9.5	4.0	<mdl< td=""></mdl<>
Total Xylenes	5,600	27,400	428,000	10.9	<mdl< td=""><td>14.0</td><td>9.1</td><td><mdl< td=""></mdl<></td></mdl<>	14.0	9.1	<mdl< td=""></mdl<>
PNAs	\gg	×	$>\!\!<$	\times	\times	$>\!\!<$	\times	$>\!\!<$
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Вепго (а) Рутепе	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	205	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	367	2,830	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx	106	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	209	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 3 of 6

Analytes/ Sample ID:	Tier I Soil	MW-5 7'	MW-5 13'	B-1 3'	B-1 7'	B-1 12'	B-2 3'	B-2 7'
SAMPLE DATE	Remediation Obj.	08/19/08	08/19/08	01/25/11	01/25/11	01/25/11	01/25/11	01/25/11
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<></td></mdl<>	<midl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></midl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>7.36</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	7.36	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""></mdl<></td></mdl<>	· <mdl< td=""></mdl<>
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs	$\geq \leq$	\times	$>\!\!\!<$	\times	$>\!$	\ge	\geq	\simeq
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	XX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	ХX	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

Page 4 of 6

Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	B-2 12' 01/25/11	MW-6 3' 03/24/11	MW-6 7' 03/24/11	MW-7 3' 03/24/11	MW-7 7' 03/24/11	MW-8 3' 03/24/11	MW-8 7' 03/24/11
MTBE	320	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzene	30	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Toluene	12,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>4.65</td><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	4.65	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
PNAs	$>\!\!<$	$>\!\!<$	${\color{red} >\!\!\! >}$	\times	\times	\times	$\geq \leq$	\times
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Acenapthylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>· <mdl< td=""><td><midl< td=""></midl<></td></mdl<></td></mdl<>	· <mdl< td=""><td><midl< td=""></midl<></td></mdl<>	<midl< td=""></midl<>
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (g,h,i) Perylene	xx	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Phenanthrene	хх	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>
Pyrene	4,200,000	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""></mdl<></td></mdl<>	<mdl< td=""></mdl<>

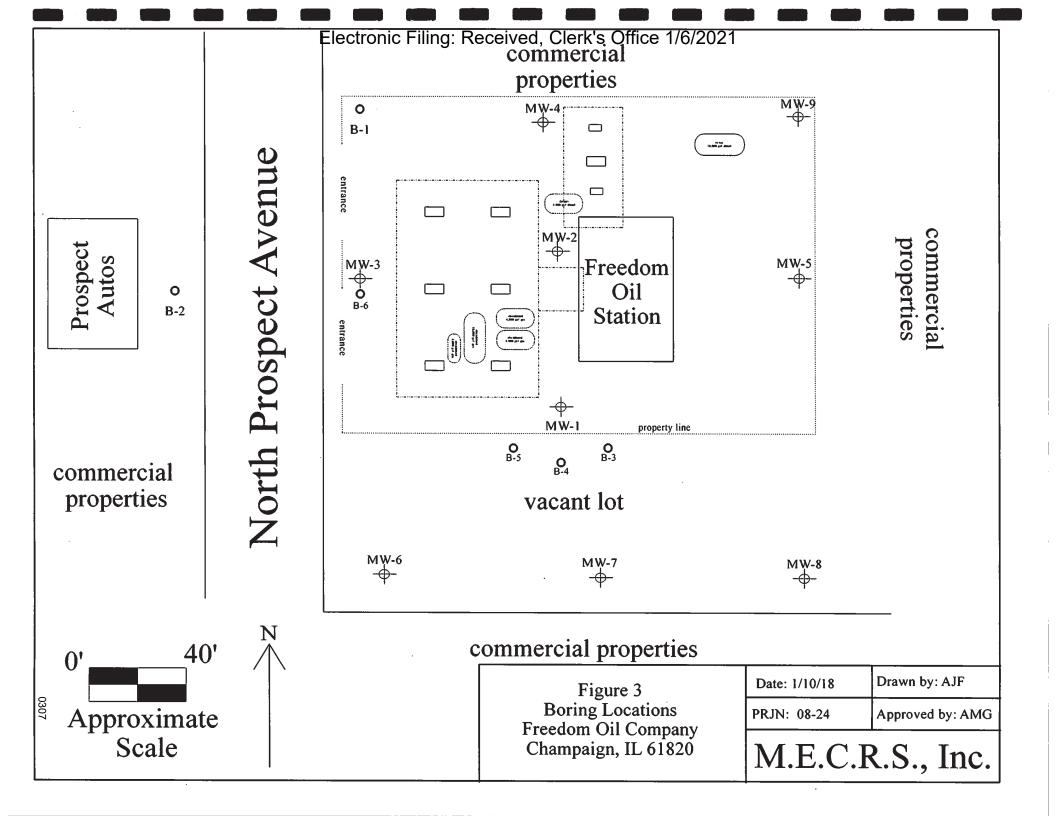
Page 5 of 6

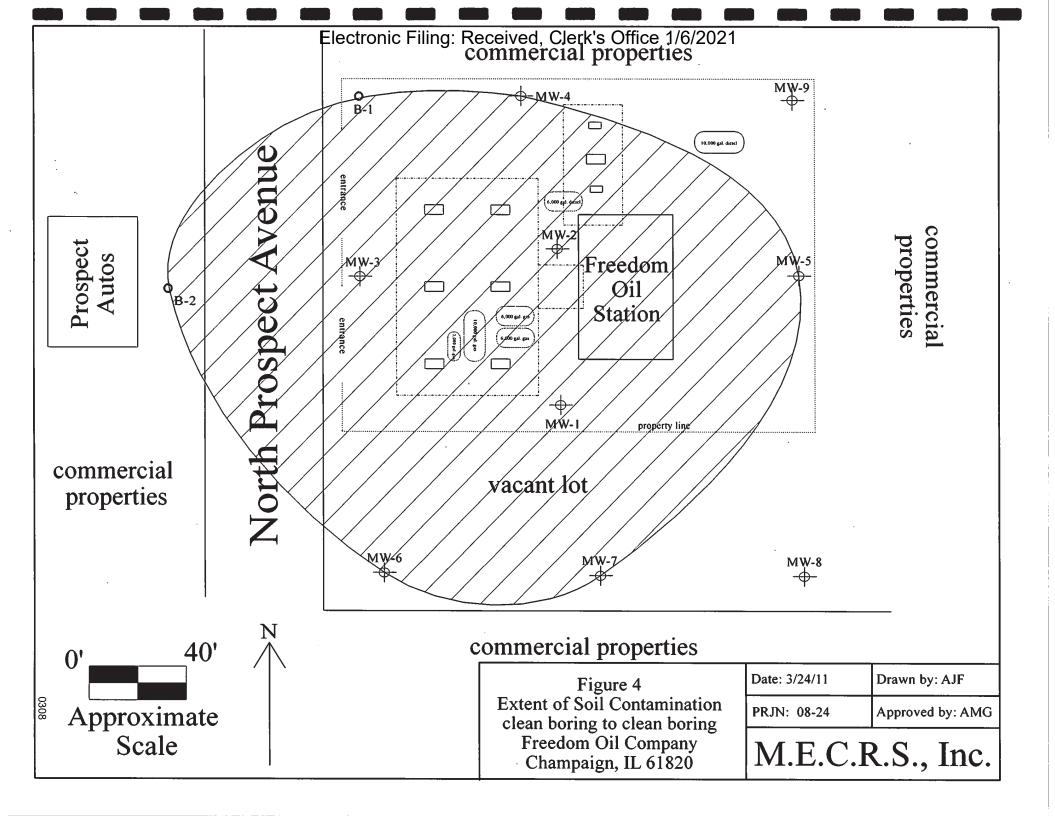
Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	MW-9 3' 03/24/11	MW-9 7' 03/24/11	B-3 3' 10/24/17	B-3 8' 10/24/17	B-4 3' 10/24/17	B-4 8' 10/24/17	B-5 3' 10/24/17
МТВЕ	320	<mdl< td=""><td><mdl< td=""><td><26</td><td><25</td><td><27</td><td><26</td><td><27</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td><25</td><td><27</td><td><26</td><td><27</td></mdl<>	<26	<25	<27	<26	<27
Benzene	30	<mdl< td=""><td><mdl< td=""><td><26</td><td>290</td><td>190</td><td>160</td><td>230</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td>290</td><td>190</td><td>160</td><td>230</td></mdl<>	<26	290	190	160	230
Toluene	12,000	<mdl< td=""><td>9.06</td><td><26</td><td><25</td><td>59</td><td><26</td><td><27</td></mdl<>	9.06	<26	<25	59	<26	<27
Ethylbenzene	13,000	<mdl< td=""><td><mdl< td=""><td><26</td><td>1,300</td><td>250</td><td>95</td><td>260</td></mdl<></td></mdl<>	<mdl< td=""><td><26</td><td>1,300</td><td>250</td><td>95</td><td>260</td></mdl<>	<26	1,300	250	95	260
Total Xylenes	5,600	<mdl< td=""><td><mdl< td=""><td>230</td><td>95</td><td>550</td><td><79</td><td>400</td></mdl<></td></mdl<>	<mdl< td=""><td>230</td><td>95</td><td>550</td><td><79</td><td>400</td></mdl<>	230	95	550	<79	400
PNAs	$\gg <$	\times	\times	\times	×	×	\times	$>\!\!<$
Acenapthene	570,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Acenapthylene	ХХ	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Anthracene	12,000,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Benzo (a) Anthracene	2,000	<mdl< td=""><td><mdl< td=""><td>14</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>14</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	14	<8.3	<8.8	<8.6	<8.8
Benzo (a) Pyrene	800	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Benzo (b) Fluoranthene	5,000	<mdl< td=""><td><mdl< td=""><td>13</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>13</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	13	<8.3	<8.8	<8.6	<8.8
Benzo (g,h,i) Perylene	XX	<mdl< td=""><td><mdl< td=""><td>40</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>40</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	40	<8.3	<8.8	<8.6	<8.8
Benzo (k) Fluoranthene	49,000	<mdl< td=""><td><mdl< td=""><td>8.5</td><td><4.2</td><td><4.5</td><td><4.4</td><td><4.4</td></mdl<></td></mdl<>	<mdl< td=""><td>8.5</td><td><4.2</td><td><4.5</td><td><4.4</td><td><4.4</td></mdl<>	8.5	<4.2	<4.5	<4.4	<4.4
Chrysene	160,000	<mdl< td=""><td><mdl< td=""><td>32</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>32</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	32	<8.3	<8.8	<8.6	<8.8
Dibenzo (a,h) Anthracene	800	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Fluoranthene	4,300,000	<mdl< td=""><td><mdl< td=""><td>30</td><td><8.3</td><td><8.8</td><td><8.6</td><td>15</td></mdl<></td></mdl<>	<mdl< td=""><td>30</td><td><8.3</td><td><8.8</td><td><8.6</td><td>15</td></mdl<>	30	<8.3	<8.8	<8.6	15
Fluorene	560,000	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Ideno (1,2,3-cd) Pyrene	8,000	<mdl< td=""><td><mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td><8.5</td><td><8.3</td><td><8.8</td><td><8.6</td><td><8.8</td></mdl<>	<8.5	<8.3	<8.8	<8.6	<8.8
Naphthalene	1,800	<mdl< td=""><td><mdl< td=""><td>350</td><td>350</td><td><88</td><td>160</td><td>300</td></mdl<></td></mdl<>	<mdl< td=""><td>350</td><td>350</td><td><88</td><td>160</td><td>300</td></mdl<>	350	350	<88	160	300
Phenanthrene	хх	<mdl< td=""><td><mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<></td></mdl<>	<mdl< td=""><td><85</td><td><83</td><td><88</td><td><86</td><td><88</td></mdl<>	<85	<83	<88	<86	<88
Рутепе	4,200,000	<mdl< td=""><td><mdl< td=""><td>23</td><td><8.3</td><td><8.8 ·</td><td><8.6</td><td><8.8</td></mdl<></td></mdl<>	<mdl< td=""><td>23</td><td><8.3</td><td><8.8 ·</td><td><8.6</td><td><8.8</td></mdl<>	23	<8.3	<8.8 ·	<8.6	<8.8

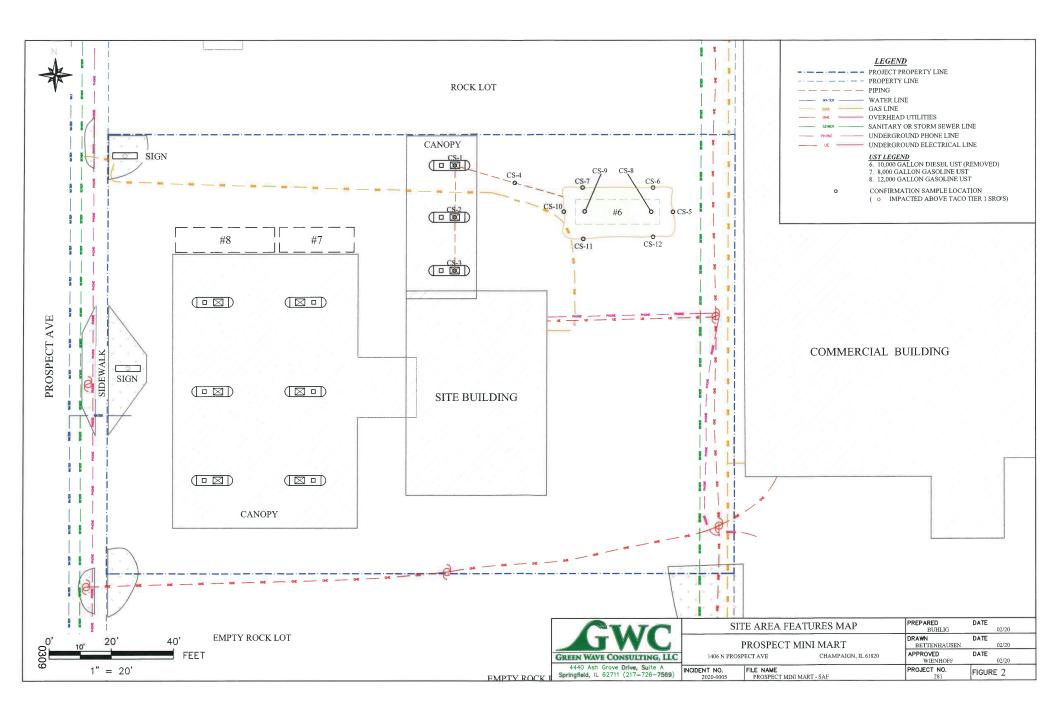
SOIL ANALYTICAL RESULTS Freedom Oil Company Champaign, IL

						-		
Analytes/ Sample ID: SAMPLE DATE	Tier I Soil Remediation Obj.	B-5 7' 10/24/17	B-6 4' 10/24/17	B-6 7' 10/24/17	<u> </u> 			
MTBE	320	<27	31	<29				
Benzene	30	410	1,300	420				
Toluene	12,000	<27	670	230				
Ethylbenzene	13,000	250	1,200	340				
Total Xylenes	5,600	170	5,600	1,900				
PNAs	$\geq \leq$	\times	$>\!\!\!<$	$>\!\!<$	$\geq \!$	$\geq \leq$	$\geq \leq$	$>\!\!\!<$
Acenapthene	570,000	<86	280	<90				
Acenapthylene	xx	<86	<90	<90				
Anthracene	12,000,000	<86	440	180				
Benzo (a) Anthracene	2,000	<8.6	23	140				
Benzo (a) Pyrene	800	<8.6	210	<9.0				
Benzo (b) Fluoranthene	5,000	<8.6	330	150				
Benzo (g,h,i) Perylene	xx	<8.6	220	170				
Benzo (k) Fluoranthene	49,000	<4.3	96	56				
Chrysene	160,000	<8.6	380	230				
Dibenzo (a,h) Anthracene	800	<8.6	<9.0	19				
Fluoranthene	4,300,000	<8.6	640	270				
Fluorene	560,000	<86	<90	<90				
Ideno (1,2,3-cd) Pyrene	8,000	<8.6	130	77				
Naphthalene	1,800	180	150	160				
Phenanthrene	xx	<86	720	480				
Pyrene	4,200,000	<8.6	520	220				

ALL RESULTS REPORTED IN PARTS PER BILLION (ug/kg, ug/L)


XX = Tier 1 soil remediation objective not listed in TACO tables.


NA = not analyzed


M = Matrix interferences identified

TACO Parameters

Sample #	foc	ρH	Bulk Density,	Particle Density	% Moisture	Porosity
Surface	2.90%	7.40	1.26	2.52	42.8%	0.50
Subsurface	0.87%	7.77	1.50	2.64	27.8%	0.43

Electronice Filinging a cained in Clark's configuration 14/6/2021

Shree Kuber, Inc. Champaign, Illinois Incident #20200005

Sample Name	TIER 1	CS-1	CS-2	CS-3	CS-4	CS-5	CS-6	CS-7
Depth	Remediation	3.0	3.0	3.0	3.0	9.0	9.0	9.0
Sample Date	Objectives	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20	1/22/20
BTEX / MTBE								
Benzene	0.03	ND						
Ethylbenzene	13	0.066	0.021	0.194	ND	ND	ND	ND
MTBE	0.32	ND						
Toluene	12	ND						
Total Xylenes	5.6	ND						
PNA								
Acenaphthene	570	ND						
Acenaphthylene	15	ND						
Anthracene	12000	ND						
Benzo(a)Anthracene	0.9	ND						
Benzo(b)Fluoranthene	0.9	ND						
Benzo(k)Fluoranthene	9	ND						
Benzo(g,h,I)Perylene	2300	ND						
Benzo(a)Pyrene	0.09	ND						
Chrysene	88	ND						
Dibenzo(a,h)Anthracene	0.09	ND						
Fluoranthene	3100	ND						
Fluorene	560	ND						
Indeno(1,2,3-c,d)Pyrene	0.9	ND						
Napthalene	1.8	ND						
Phenanthrene	140	ND						
Pyrene	2300	0.219	0.551	1.360	ND	ND	ND	0.265

Notes: All results are presented in mg/kg Bold /Underlined values indicate exceedance ND: Below Acceptable Detection Limits

NA: Not Analyzed

Electronice Filingin Recained in Clark's of this and 16/2021

Shree Kuber, Inc. Champaign, Illinois Incident #20200005

Sample Name	TIER 1	CS-8	CS-9	CS-10	CS-11	CS-12
Depth	Remediation	13.0	13.0	9.0	9.0	9.0
Sample Date	Objectives	1/22/20	1/22/20	1/23/20	1/23/20	1/23/20
BTEX / MTBE						
Benzene	0.03	ND	ND	ND	ND	ND
Ethylbenzene	13	ND	ND	ND	ND	ND
MTBE	0.32	ND	ND	ND	ND	ND
Toluene	12	ND	ND	ND	ND	ND
Total Xylenes	5.6	ND	ND	ND	ND	ND
PNA						
Acenaphthene	570	ND	ND	ND	ND	ND
Acenaphthylene	15	ND	ND	ND	ND	ND
Anthracene	12000	ND	ND	ND	ND	ND
Benzo(a)Anthracene	0.9	ND	ND	ND	ND	ND
Benzo(b)Fluoranthene	0.9	ND	ND	ND	ND	ND
Benzo(k)Fluoranthene	9	ND	ND	ND	ND	ND
Benzo(g,h,I)Perylene	2300	ND	ND	ND	ND	ND
Benzo(a)Pyrene	0.09	ND	ND	ND	ND	ND
Chrysene	88	ND	ND	ND	ND	ND
Dibenzo(a,h)Anthracene	0.09	ND	ND	ND	ND	ND
Fluoranthene	3100	ND	ND	ND	ND	ND
Fluorene	560	ND	ND	ND	ND	ND
Indeno(1,2,3-c,d)Pyrene	0.9	ND	ND	ND	ND	ND
Napthalene	1.8	ND	ND	ND	ND	ND
Phenanthrene	140	ND	ND	ND	ND	ND
Pyrene	2300	ND	ND	ND	0.195	ND

Notes: All results are presented in mg/kg Bold /Underlined values indicate exceedance ND: Below Acceptable Detection Limits

NA: Not Analyzed

20200005 Shree Kuber, Inc. site

Agency determined incident is a re-reporting of 2008 incident.

Backfill was not sampled during Early Action of 20200005 incident. So, they ridded the evidence of a new release.

Data concentrations of 2020 incident are lower than 2008 incident.

• Per Agency manager's meeting 6/16/2020, incident 2020005 is a re-reporting of incident 20080255 due to the soil indicator contaminant concentrations present at the UST do not indicate a new release, and the UST is within the plume of the previous incident based on CAP map submitted to Agency.

FLEMOIS EWVIRORINGENFALSPROTECTION AGENCY

1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276 · (217) 782-3397

JB PRITZKER, GOVERNOR

JOHN J. KIM, DIRECTOR

(217) 524-3300

CERTIFIED MAIL
7018 1830 0000 5282 8469

JUN 3-0 2020

Sunil Modi Shree Kuber, Inc. 1406 North Prospect Avenue Champaign, IL 61820

Re:

0190105433 -- Champaign County

Champaign\Shree Kuber, Inc. - Prospect Mini Mart

1406 North Prospect Avenue Leaking UST Incident 20200005 Leaking UST Technical File

Dear Mr. Modi:

The Illinois Environmental Protection Agency (Illinois EPA) has reviewed the 45-Day/Corrective Action Completion Report submitted for the above-referenced incident. This report, dated March 16, 2020, was received by the Illinois EPA on March 17, 2020. Citations in this letter are from the Environmental Protection Act (415 ILCS 5) (Act) and Title 35 of the Illinois Administrative Code (35 Ill. Adm. Code).

Based on the information currently in the Illinois EPA's possession, it has been determined that the above-referenced incident is a re-reporting of Leaking UST Incident 20080255. Therefore, this incident is not subject to the reporting requirements of Title XVI of the Act or 35 Ill. Adm. Code 731 or 734.

The concentrations of contaminants in the soil after removal of the underground storage tanks do not indicate a new release occurred.

It should be noted that early action, site investigation, and corrective action activities associated with Leaking UST Incident 20200005 exceed the minimum requirements necessary to comply with the Act. Costs associated with early action, site investigation, and corrective action activities and associated materials or services exceeding the minimum requirements necessary to comply with the Act are ineligible for payment from the Fund pursuant to Section 57.7(c)(3) of the Act and 35 Ill. Adm. Code 734.630(o).

Page 2

If you have any questions or require further assistance, please contact Nicole Cosenza at (217) 782-1638.

Sincerely,

Trent L. Benanti, P.E.

Int & Bt

Unit Manager

Leaking Underground Storage Tank Program

Remedial Project Management Section

Bureau of Land

Tlb:bb:nc\20200005.docx

c: Green Wave Consulting, LLC (electronic copy), Mike Bettenhausen,

mikeb@greenwavecon.com

BOL File